Research progress of coronary vein to arterial transformation
CSTR:
Author:
Affiliation:

1.Chongqing Medical University, Chongqing 400000, China;2.Department of Cardiology, Shenzhen University General Hospital, Shenzhen, Guangdong 518000, China;3.Department of Cardiology, the Second Affliated Hospital of Chongqing Medical University, Chongqing 400000, China)

Clc Number:

R541.4

  • Article
  • | |
  • Metrics
  • |
  • Reference [34]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The pathological characteristic of coronary heart disease (CHD)is rupture or erosion of atherosclerotic plaques of coronary artery which induces platelet aggregation, thrombosis, coronary artery spasm,microvascular embolism.They cause acute or subacute hypoxia or ischemia of myocardium. Studies show that coronary arterial endothelial cells can differentiate from venous endothelial cells. This review illustrates the classification of angiogenesis , the process of differentiation and clinical significance of coronary venous endothelial cells to arterial endothelial cells and the exploration of potential therapeutic targets. It aimed at providing reference for the future coronary angiogenesis.

    Reference
    [1] Pérez-Pomares JM, Carmona R, González-Iriarte M, et al.Origin of coronary endothelial cells from epicardial mesothelium in avian embryos.Int J Dev Biol, 2,6(8):1005-1013.
    [2] Kristy RH, Hiroo U, Irving LW, et al.Coronary arteries form by developmental reprogramming of venous cells.Nature, 0,5:464(7288):549-553.
    [3] Swift MR, Weinstein BM.Arterial-venous specification during development.Circ Res, 9,4(5):576-588.
    [4] Arima S, Nishiyama K, Ko T, et al.Angiogenic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement.Development, 1,8(21):4763-4776.
    [5] Jakobsson L, Franco CA, Bentley K, et al.Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting.Nat Cell Biol, 0,2(10):943-953.
    [6] Lewis FT.The question of sinusoids.Anat Anz, 4,5:261-279.
    [7] Grant RT.Development of the cardiac coronary vessels in the rabbit.Heart, 3,3:261-271.
    [8] Bennett HS.The development of the blood supply to the heart in the embryo pig.Am J Anat, 6,0(1):27-54.
    [9] Hutchins GM, Kessler-Hanna A, Moore GW.Development of the coronary arteries in the embryonic human heart.Circulation, 8,7(6):1250-1257.
    [10] Mikawa T, Gourdie RG.Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with in growth of the epicardial organ.Dev Biol, 6,4(2):221-232.
    [11] Manner J.Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardialprimordium.Anat Rec, 9,5(2):212-226.
    [12] Majesky MW.Development of coronary vessels.Curr Top Dev Biol, 4,2:225-259.
    [13] Merki E, Zamora M, Raya A, et al.Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation.Proc Natl Acad Sci USA, 5,2(51):18455-18460.
    [14] Wilm B, Ipenberg A, Hastie ND, et al.The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature.Development, 5,2(23):5317-5328.
    [15] Cai CL, Martin JC, Sun Y, et al.A myocardial lineage derives from Tbx18 epicardial cells.Nature, 8,4(7200):104-108.
    [16] ZhouB, Ma Q, Rajagopal S, et al.Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart.Nature, 8,4(7200):109-113.
    [17] De Andres AV, Munoz-Chapuli R, Sans-Coma V.Development of the coronary arteries and cardiac veins in the dogfish (Scyliorhinus canicula).Anat Rec, 3,5(3):436-442.
    [18] Van den Akker NM, Caolo V, Wisse LJ, et al.Developmental coronary maturation is disturbedby aberrant cardiac vascular endothelial growth factor expression and Notch signalling.Cardiovasc Res, 8,8(2):366-375.
    [19] Hameau DR, Veas PN, Mendez LM, et al.Focal arterialization and neoatherosclerosis of a saphenous vein graft.Improving our understanding of late graft failures.Arq Bras Cardiol, 6,7(5):495-496.
    [20] Su T, Stanley G, Sinha R, et al.Single cell analysis of early progenitor cells that build coronary arteries.Nature, 8,9(7714):356-362.
    [21] Raz E, Mahabaleshwar H.Chemokine signaling in embryonic cell migration:a fisheye view.Development, 9,6(8):1223-1229.
    [22] Bayliss PE, Bellavance KL, Whitehead GG, et al.Chemical modulation of receptor signaling inhibits regenerative angiogenesis in adult zebrafish.Nat Chem Biol, 6,2(5):265-273.
    [23] Siekmann AF, Affolter M, Belting HG.The tip cell concept 10 years after:New players tune in for a common theme.Exp Cell Res, 3,9(9):1255-1263.
    [24] del Toro R, Prahst C, Mathivet T, et al.Identification and functional analysis of endothelial tip cell enriched genes.Blood, 0,6(19):4025-4033.
    [25] Strasser GA, Kaminker JS, Tessier-Lavigne M.Microarray analysis of retinal endothelial tip cells identifies CXCR4 as a mediator of tip cell morphology and branching.Blood, 0,5(24):5102-5110.
    [26] Stratman AN, Davis MJ, Davis GE.VEGF and FGF prime vascular tube morphogenesis and sprouting directed by hematopoietic stem cell cytokines.Blood, 1,7(14):3709-3719.
    [27] Boldajipour B, Mahabaleshwar H, Kardash E, et al.Control of chemokine-guided cell migration by ligand sequestration.Cell, 8,2(3):463-473.
    [28] Donà E, Barry JD, Valentin G, et al.Directional tissue migration through a self-generated chemokine gradient.Nature, 3,3(7475):285-289.
    [29] Venkiteswaran G, Lewellis SW, Wang J, et al.Generation and dynamics of an endogenous, self generated signaling gradient across a migrating tissue.Cell, 3,5(3):674-687.
    [30] Wu B, Zhang Z, Lui W, et al.Endocardial cells form the coronary arteries by angiogenesis through myocardial endocardial VEGF signaling.Cell, 2,1(5):1083-1096.
    [31] Chen HI, Sharma B, Akerberg BN, et al.The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis.Development, 4,1(23):4500-4512.
    [32] Volz KS, Jacobs AH, Chen HI, et al.Pericytes are progenitors for coronary artery smooth muscle.Elife, 5,4:e10036.
    [33] Ivins S, Chappell J, Vernay B, et al.The CXCL12/CXCR4 axis plays a critical role in coronary artery development.Dev Cell, 5,3(4):455-468.
    [34] Sharma B, Chang A, Red-Horse K.Coronary artery development:progenitor cells and differentiation pathways.Annu Rev Physiol, 7,0(79):1-19.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

TAN Lanlan, WU Xiaojing, ZHOU Qi. Research progress of coronary vein to arterial transformation[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2020,28(6):544-547.

Copy
Share
Article Metrics
  • Abstract:796
  • PDF: 661
  • HTML: 0
  • Cited by: 0
History
  • Received:June 17,2019
  • Revised:August 29,2019
  • Online: May 22,2020
Article QR Code