The bioinformatics research of differentia gene expression in carotid atherosclerosis and potential mechanism of berberine intervening carotid atherosclerosis
CSTR:
Author:
Affiliation:

1.Department of Pharmacy, the Second People's Hospital of Binzhou, Binzhou, Shandong 256600, China;2.Department of Peripheral Vascular Disease, Ji'nan Municipal Hospital of Traditional Chinese Medicine, Ji'nan, Shandong 250012, China;3.Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong 250021, China)

Clc Number:

R363;R5

  • Article
  • | |
  • Metrics
  • |
  • Reference [44]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Aim To investigate the new potential mechanisms of carotid atherosclerosis pathogenesis and explore the potential targets and pathways of berberine intervention in carotid atherosclerosis by bioinformatic research. Methods The study searched the Gene Expression Omnibus database of the National Center for Biotechnology Information (NCBI)and obtained the GSE28829 datasets of carotid atherosclerosis plaque gene expression microarray, screened the sample differentially expressed gene data for enrichment analysis. The potential targets of berberine were searched and obtained to be intersected with the differentially expressed genes of carotid atherosclerosis in order to obtain the potential targets of berberine intervention in carotid atherosclerosis. Enrichment analysis was performed and the core targets were screened. Results A total of 174 differentially expressed genes in carotid atherosclerosis were screened, involving chemokines, nuclear factor kappa B, Toll-like receptors, fatty acid degradation and other signaling pathways. Five potential targets of berberine in carotid atherosclerosis were screened, involving fluid shear and atherosclerosis, interleukin-17, tumor necrosis factor and other signaling pathways. Monocyte chemoattractant protein-1(MCP-1/CCL2), heme oxygenase 1(HO-1/HMOX1) and matrix metalloproteinase-9(MMP-9) were identified as the core targets of berberine intervening carotid atherosclerosis by topology and enrichment analysis. Conclusions Differentially expressed genes in carotid atherosclerosis are mainly enriched in signaling pathways such as inflammatory response and lipid metabolism; berberine may intervene in carotid atherosclerosis by mediating targets such as CCL2, HMOX1, MMP-9, and regulating fluid shear and atherosclerosis, interleukin-17, and tumor necrosis factor and other signaling pathways.

    Reference
    [1] VIRANI S S, ALONSO A, APARICIO H J, et al.Heart disease and stroke statistics-2021 update:a report from the American heart association.Circulation, 1,3(8):e254-e743.
    [2] DIAO Z, JIA G, WU W, et al.Carotid endarterectomy versus carotid angioplasty for stroke prevention:a systematic review and Meta-analysis.J Cardiothorac Surg, 6,1(1):142.
    [3] SARDAR P, CHATTERJEE S, ARONOW H D, et al.Carotid artery stenting versus endarterectomy for stroke prevention:a Meta-analysis of clinical trials.J Am Coll Cardiol, 7,9(18):2266-2275.
    [4] ROMERO J R, PREIS S R, BEISER A, et al.Carotid atherosclerosis and cerebral microbleeds:the framingham heart study.J Am Heart Assoc, 6,5(3):e002377.
    [5] MUSIALEK P, HOPF-JENSEN S.Commentary:carotid artery revascularization for stroke prevention:a new era.J Endovasc Ther, 7,4(1):138-148.
    [6] 朱昌国, 李帅, 孙艳君, 等.小檗碱调控PI3K/Akt信号通路干预糖尿病动脉硬化的实验研究.河北医学, 0,6(12):1937-1942.
    [7] 王玉涛, 庞雪, 李安举.小檗碱干预下肢动脉硬化闭塞症的网络药理学研究.现代中西医结合杂志, 0,9(25):2793-6,3.
    [8] 柴美静, 王欢, 李迎, 等.小檗碱对脑梗死患者颈动脉粥样硬化斑块稳定性及血清基质金属蛋白酶-9和氧化低密度脂蛋白的影响.中国现代医学杂志, 7,7(5):47-53.
    [9] DAVIS A P, WIEGERS T C, WIEGERS J, et al.CTD anatomy:analyzing chemical-induced phenotypes and exposures from an anatomical perspective, with implications for environmental health studies.Curr Res Toxicol, 1,2:128-139.
    [10] STELZER G, ROSEN N, PLASCHKES I, et al.The GeneCards suite:from gene data mining to disease genome sequence analyses.CurrProtoc Bioinformatics, 6,4(30):1.30.1-1.30.33.
    [11] CHIN C H, CHEN S H, WU H H, et al.cytoHubba:identifying hub objects and sub-networks from complex interactome.BMC Syst Biol, 4,8(4):S11.
    [12] BAKOGIANNIS C, SACHSE M, STAMATELOPOULOS K, et al.Platelet-derived chemokines in inflammation and atherosclerosis.Cytokine, 9,2:154157.
    [13] WANG Z, LIU B, ZHU J, et al.Nicotine-mediated autophagy of vascular smooth muscle cell accelerates atherosclerosis via nAChRs/ROS/NF-κB signaling pathway.Atherosclerosis, 9,4:1-10.
    [14] LIU H, XIONG W, LUO Y, et al.Adipokine chemerin stimulates progression of atherosclerosis in ApoE-/- mice.Biomed Res Int, 2019:7157865.
    [15] 刘孟楠, 罗钢, 刘平, 等.蛭龙活血通瘀胶囊对家兔颈动脉粥样硬化斑块组织p-NF-κB、NLRP3表达的影响.西部中医药, 1,4(3):25-29.
    [16] XIE X, SHI X, LIU M.The roles of TLR gene polymorphisms in atherosclerosis:a systematic review and Meta-analysis of 35 317 subjects.Scand J Immunol, 7,6(1):50-58.
    [17] MA J, LI H.The role of gut microbiota in atherosclerosis and hypertension.Front Pharmacol, 8,9:1082.
    [18] PULAKAZHIVENU V K, ADIJIANG A, SEIBERT T, et al.Heat shock protein 27-derived atheroprotection involves reverse cholesterol transport that is dependent on GM-CSF to maintain ABCA1 and ABCG1 expression in ApoE-/-mice.FASEB J, 7,1(6):2364-2379.
    [19] CARRACEDO M, ARTIACH G, ARNARDOTTIR H, et al.The resolution of inflammation through omega-3 fatty acids in atherosclerosis, intimal hyperplasia, and vascular calcification.Semin Immunopathol, 9,1(6):757-766.
    [20] NOMURA M, LIU J, YU Z X, et al.Macrophage fatty acid oxidation inhibits atherosclerosis progression.J Mol Cell Cardiol, 9,7:270-276.
    [21] 马春艳, 徐瑞霞, 姚雨宏, 等.小檗碱抑制氧化型低密度脂蛋白诱导的人脐静脉内皮细胞增殖及其分子机制.中国动脉硬化杂志, 8,6(2):144-151.
    [22] GEORGAKIS M K, DE LEMOS J A, AYERS C, et al.Association of circulating monocyte chemoattractant protein-1 levels with cardiovascular mortality:a Meta-analysis of population-based studies.JAMA Cardiol, 1,6(5):587-592.
    [23] GLEISSNER C A.Translational atherosclerosis research:From experimental models to coronary artery disease in humans.Atherosclerosis, 6,8:110-116.
    [24] HUANG C, HU Y W, ZHAO J J, et al.Long noncoding RNA HOXC-AS1 suppresses ox-LDL-induced cholesterol accumulation through promoting HOXC6 expression in THP-1 macrophages.DNA Cell Biol, 6,5(11):722-729.
    [25] GLL T, PETH D, NAGY A, et al.Heme induces endoplasmic reticulum stress (HIER stress) in human aortic smooth muscle cells.Front Physiol, 8,9:1595.
    [26] GLL T, BALLA G, BALLA J.Heme, heme oxygenase, and endoplasmic reticulum stress-A new insight into the pathophysiology of vascular diseases.Int J Mol Sci, 9,0(15):3675.
    [27] 刘洋, 孙岳, 杨安宁, 等.铁死亡参与高脂饮食诱导的ApoE-/-小鼠动脉粥样硬化及ox-LDL诱导的泡沫细胞形成过程.实用医学杂志, 1,7(5):585-590.
    [28] 张静, 赵外荣, 施雯婷, 等.铁死亡及其在心血管疾病中的作用.国际心血管病杂志, 0,7(6):339-343.
    [29] HE X, YAO Q, FAN D, et al.Cephalosporin antibiotics specifically and selectively target nasopharyngeal carcinoma through HMOX1-induced ferroptosis.Life Sci, 1,7:119457.
    [30] 李朝, 刘亚卫, 王丹丹, 等.血清炎症标记物与颈动脉不稳定斑块的研究进展.医学理论与实践, 1,4(1):20-22.
    [31] 王瑞, 董瑞国.血清炎症标记物与颈动脉斑块稳定性.国际脑血管病杂志, 9,7(1):57-62.
    [32] 夏红利, 刘国利, 吴岸森, 等.颈动脉斑块与斑块旁组织基因差异表达和信号通路分析.中国动脉硬化杂志, 9,7(8):661-666.
    [33] 谭利兰, 罗勇, 肖晨, 等.低剪切应力与动脉粥样硬化形成研究新进展.中国动脉硬化杂志, 9,7(5):432-438.
    [34] ZHOU H, MENG L, ZHOU W, et al.Computational and experimental assessment of influences of hemodynamic shear stress on carotid plaque.Biomed Eng Online, 7,6(1):92.
    [35] 李兆钰, 马度芳, 王永成, 等.免疫细胞亚群平衡在动脉粥样硬化中的机制与中医药调节作用的研究进展.中国动脉硬化杂志, 1,9(9):737-741.
    [36] PIETROWSKI E, BENDER B, HUPPERT J, et al.Pro-inflammatory effects of interleukin-17A on vascular smooth muscle cells involve NAD(P)H-oxidase derived reactive oxygen species.J Vasc Res, 1,8(1):52-58.
    [37] DANZAKI K, MATSUI Y, IKESUE M, et al.Interleukin-17a deficiency accelerates unstable atherosclerotic plaque formation in apolipoprotein e-deficient mice.Arterioscler Thromb Vasc Biol, 2,2(2):273-280.
    [38] SUO F, JIANG F, FANG X, et al.Contrast of diagnostic value between IL-17 combined with IL-18 and CT angiography in carotid atherosclerosis.Exp Ther Med, 9,7(2):1400-1404.
    [39] WANG B, WANG X, SUN H, et al.The effects of T helper 17 and regulatory T cells on patients with carotid atherosclerosis.Pak J Pharm Sci, 7,0(5(Supplementary)):1923-1928.
    [40] LU L, ZHANG R Y, WANG X Q, et al.C1q/TNF-related protein-1:an adipokine marking and promoting atherosclerosis.Eur Heart J, 6,7(22):1762-1771.
    [41] HA S J, LEE J, SONG K M, et al.Ultrasonicated lespedeza cuneata extract prevents TNF-α-induced early atherosclerosis in vitro and in vivo.Food Funct, 8,9(4):2090-2101.
    [42] ZERNECKE A.Dendritic cells in atherosclerosis:evidence in mice and humans.Arterioscler Thromb Vasc Biol, 5,5(4):763-770.
    [43] KOLTSOVA E K, LEY K.How dendritic cells shape atherosclerosis.Trends Immunol, 1,2(11):540-547.
    [44] GAO W, LIU H, YUAN J, et al.Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-α mediated NF-κB pathway.J Cell Mol Med, 6,0(12):2318-2327.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHANG Jinxia, WANG Yutao, SUN Yan. The bioinformatics research of differentia gene expression in carotid atherosclerosis and potential mechanism of berberine intervening carotid atherosclerosis[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2022,30(2):117-124.

Copy
Share
Article Metrics
  • Abstract:800
  • PDF: 810
  • HTML: 0
  • Cited by: 0
History
  • Received:April 07,2021
  • Revised:September 01,2021
  • Online: January 07,2022
Article QR Code