The Mechanism of Cuproptosis and Its Advancements in Atherosclerosis Research
Author:
Affiliation:

1.Insititute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China;2.Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Wubei 430072, China)

Clc Number:

R5;R363

  • Article
  • | |
  • Metrics
  • |
  • Reference [77]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Copper, an essential trace element in the human body, is pivotal in numerous physiological functions, including mitochondrial respiration, antioxidant reactions, and the synthesis of biological macromolecules. The cellular copper content is tightly regulated, as both copper deficiency and copper overload can be detrimental and lead to the onset of various diseases. Recently, a novel form of cell death known as Cuproptosis has been identified, which is triggered by an excess of copper. Excessive intracellular copper promotes the degradation of Fe-S cluster proteins and protein toxicity by stimulating the sulfur-acylation aggregation process of mitochondria-related proteins, ultimately resulting in cell death. With the emergence of the concept of copper-induced cell death, researchers have shifted their focus towards understanding the potential role of copper in atherosclerosis. This review delves into the regulatory mechanisms of copper metabolism and cuproptosis, encapsulates current research connecting an abundance of copper to atherosclerosis, and examines how cuproptosis influences atherosclerosis progression, with the goal of devising novel approaches for atherosclerosis prevention and management through cuproptosis.

    Reference
    [1] FAN J, WATANABE T.Atherosclerosis:known and unknown.Pathol Int, 2,2(3):151-160.
    [2] FALK E.Pathogenesis of atherosclerosis.J Am Coll Cardiol, 6,7(8 Suppl):C7-C12.
    [3] 张瑜, 涂均楚, 李玉洁, 等.动脉粥样硬化危险因素衰老、肥胖、生物钟紊乱与核糖体新生的研究进展.中国动脉硬化杂志, 3,1(11):921-928.ZHANG Y, TU J C, LI Y J, et al.Research progress of atherosclerosis risk factors like aging, obesity, circadian clock disorders and ribosome biogenesis.Chin J Arterioscler, 3,1(11):921-928.
    [4] FESTA R A, THIELE D J.Copper:an essential metal in biology.Curr Biol, 1,1(21):R877-R883.
    [5] KIM B E, NEVITT T, THIELE D J.Mechanisms for copper acquisition, distribution and regulation.Nat Chem Biol, 8,4(3):176-185.
    [6] TSVETKOV P, COY S, PETROVA B, et al.Copper induces cell death by targeting lipoylated TCA cycle proteins.Science, 2,5(6586):1254-1261.
    [7] TANG D, CHEN X, KROEMER G.Cuproptosis:a copper-triggered modality of mitochondrial cell death.Cell Res, 2,2(5):417-418.
    [8] WANG D, TIAN Z, ZHANG P, et al.The molecular mechanisms of cuproptosis and its relevance to cardiovascular disease.Biomed Pharmacother, 3,3:114830.
    [9] 朱文俊, 张议月, 罗秀菊, 等.铜及其复合物在心血管疾病中的作用.中南大学学报(医学版), 3,8(11):1731-1738.ZHU W J, ZHANG Y Y, LUO X J, et al.Role of copper and its complexes in cardiovascular diseases.J Cent South Univ (Med Sci), 3,8(11):1731-1738.
    [10] 房慧琴, 马晓维, 陈秋, 等.基于生物信息学探讨与铜死亡相关的早、晚期动脉粥样硬化的差异基因及潜在标志物.中国动脉硬化杂志, 3,1(11):938-944.FANG H Q, MA X W, CHEN Q, et al.Study on differential genes and potential biomarkers of early and advanced athero-sclerosis related to cuproptosis based on bioinformatics.Chin J Arterioscler, 3,1(11):938-944.
    [11] GRUBMAN A, WHITE A R.Copper as a key regulator of cell signalling pathways.Expert Rev Mol Med, 4,6:e11.
    [12] GALLER T, LEBRUN V, RAIBAUT L, et al.How trimerization of CTR1 N-terminal model peptides tunes Cu-binding and redox-chemistry.Chem Commun (Camb), 0,6(81):12194-12197.
    [13] RAMOS D, MAR D, ISHIDA M, et al.Mechanism of copper uptake from blood plasma ceruloplasmin by mammalian cells.PLoS one, 6,1(3):e0149516.
    [14] WEISS K C, LINDER M C.Copper transport in rats involving a new plasma protein.Am J Physiol, 5,9(1 Pt 1):E77-E88.
    [15] SUTTLE N F.Mineral nutrition of livestock.5th ed.Wallingford:CABI, 2022.
    [16] NY'VLTOV E, DIETZ J V, SERAVALLI J, et al.Coordination of metal center biogenesis in human cytochrome c oxidase.Nat Commun, 2,3(1):3615.
    [17] BERTINATO J, L'ABB M R.Copper modulates the degradation of copper chaperone for Cu, Zn superoxide dismutase by the 26S proteosome.J Biol Chem, 3,8(37):35071-35078.
    [18] MIAO L, ST CLAIR D K.Regulation of superoxide dismutase genes:implications in disease.Free Radic Biol Med, 9,7(4):344-356.
    [19] PALMGREN M G, NISSEN P.P-type ATPases.Annu Rev Biophys, 1,0:243-266.
    [20] LA FONTAINE S, ACKLAND M L, MERCER J F.Mammalian copper-transporting P-type ATPases, ATP7A and ATP7B:emerging roles.Int J Biochem Cell Biol, 0,2(2):206-209.
    [21] LUTSENKO S, BARNES N L, BARTEE M Y, et al.Function and regulation of human copper-transporting ATPases.Physiol Rev, 7,7(3):1011-1046.
    [22] LA FONTAINE S, MERCER J F.Trafficking of the copper-ATPases, ATP7A and ATP7B:role in copper homeostasis.Arch Biochem Biophys, 7,3(2):149-167.
    [23] OHGAMI R S, CAMPAGNA D R, MCDONALD A, et al.The steap proteins are metalloreductases.Blood, 6,8(4):1388-1394.
    [24] SHARP P A.Ctr1 and its role in body copper homeostasis.Int J Biochem Cell Biol, 3,5(3):288-291.
    [25] MAXFIELD A B, HEATON D N, WINGE D R.Cox17 is functional when tethered to the mitochondrial inner membrane.J Biol Chem, 4,9(7):5072-5080.
    [26] HORNG Y C, LEARY S C, COBINE P A, et al.Human Sco1 and Sco2 function as copper-binding proteins.J Biol Chem, 5,0(40):34113-34122.
    [27] YANG D, XIAO P, QIU B, et al.Copper chaperone antioxidant 1:multiple roles and a potential therapeutic target.J Mol Med (Berl), 3,1(5):527-542.
    [28] HALLIWELL B, GUTTERIDGE J M.Oxygen toxicity, oxygen radicals, transition metals and disease.Biochem J, 4,9(1):1-14.
    [29] GAETKE L M, CHOW C K.Copper toxicity, oxidative stress, and antioxidant nutrients.Toxicology, 3,9(1/2):147-163.
    [30] TARDITO S, BASSANETTI I, BIGNARDI C, et al.Copper binding agents acting as copper ionophores lead to caspase inhibition and paraptotic cell death in human cancer cells.J Am Chem Soc, 1,3(16):6235-6242.
    [31] NAGAI M, VO N H, SHIN OGAWA L, et al.The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells.Free Radic Biol Med, 2,2(10):2142-2150.
    [32] LILL R, FREIBERT S A.Mechanisms of mitochondrial iron-sulfur protein biogenesis.Annu Rev biochem, 0,9:471-499.
    [33] WOLF D, LEY K.Immunity and inflammation in atherosclerosis.Circ Res, 9,4(2):315-327.
    [34] WEBER C, NOELS H.Atherosclerosis:current pathogenesis and therapeutic options.Nat Med, 1,7(11):1410-1422.
    [35] CAMPIA U, GERHARD-HERMAN M, PIAZZA G, et al.Peripheral artery disease:past, present, and future.Am J Med, 9,2(10):1133-1141.
    [36] ENDRES M, MORO M A, NOLTE C H, et al.Immune pathways in etiology, acute phase, and chronic sequelae of ischemic stroke.Circ Res, 2,0(8):1167-1186.
    [37] SALONEN J T, SALONEN R, SEPPNEN K.Interactions of serum copper, selenium, and low density lipoprotein cholesterol in atherogenesis.BMJ, 1,2(6779):756-760.
    [38] 康军聪.体检人群锌、铜、镁、钙元素与颈动脉内膜中层厚度相关性研究.石家庄:河北医科大学, 2015.KANG J C.The correlation study between serum trace elements and carotid intima-media thickness in physical examiness.Shijiazhuang:Hebei Medical University, 2015.
    [39] ZHOU D, MAO Q, SUN Y, et al.Association of blood copper with the subclinical carotid atherosclerosis:an observational study.J Am Heart Assoc, 4,3(9):e033474.
    [40] ESHAK E S, ISO H, YAMAGISHI K, et al.Associations between copper and zinc intakes from diet and mortality from cardiovascular disease in a large population-based prospective cohort study.J Nutr Biochem, 8,6:126-132.
    [41] LI X, DEHGHAN M, TSE L A, et al.Associations of dietary copper intake with cardiovascular disease and mortality:findings from the Chinese perspective urban and rural epidemiology (PURE-China) study.BMC Public Health, 3,3(1):2525.
    [42] HU L, BI C, LIN T.Association between plasma copper levels and first stroke:a community-based nested case-control study.Nutr Neurosci, 2,5(7):1524-1533.
    [43] YANG S, LI Y, ZHOU L, et al.Copper homeostasis and cuproptosis in atherosclerosis:metabolism, mechanisms and potential therapeutic strategies.Cell Death Discov, 4,0(1):25.
    [44] BURTON G J, JAUNIAUX E.Oxidative stress.Best Pract Res Clin Obstet Gynaecol, 1,5(3):287-299.
    [45] BATTY M, BENNETT M R, YU E.The role of oxidative stress in atherosclerosis.Cells, 2,1(23):3843.
    [46] ZHANG P Y, XU X, LI X C.Cardiovascular diseases:oxidative damage and antioxidant protection.Eur Rev Med Pharmacol Sci, 4,8(20):3091-3096.
    [47] PEREIRA T C, CAMPOS M M, BOGO M R.Copper toxicology, oxidative stress and inflammation using zebrafish as experimental model.J Appl Toxicol, 6,6(7):876-885.
    [48] 谢安娜, 刘国一, 张孙正远, 等.过渡金属积累与细胞衰老.生理学报, 4,6(3):418-428.XIE A N, LIU G Y, ZHANG SUN Z Y, et al.Transition metal accumulation and cellular senescence.Acta Physiol Sin, 4,6(3):418-428.
    [49] JOMOVA K, VALKO M.Advances in metal-induced oxidative stress and human disease.Toxicology, 1,3(2/3):65-87.
    [50] CERVANTES-CERVANTES M P, CALDERN-SALINAS J V, ALBORES A.Copper increases the damage to DNA and proteins caused by reactive oxygen species.Biol Trace Elem Res, 5,3(3):229-248.
    [51] VALKO M, MORRIS H, CRONIN M T.Metals, toxicity and oxidative stress.Curr Med Chem, 5,2(10):1161-1208.
    [52] VALKO M, JOMOVA K, RHODES C J, et al.Redox- and non-redox-metal-induced formation of free radicals and their role in human disease.Arch Toxicol, 6,0(1):1-37.
    [53] OZCELIK D, OZARAS R, GUREL Z, et al.Copper-mediated oxidative stress in rat liver.Biol Trace Elem Res, 3,6(1/3):209-215.
    [54] OZCELIK D, UZUN H.Copper intoxication; antioxidant defenses and oxidative damage in rat brain.Biol Trace Elem Res, 9,7(1):45-52.
    [55] ZHONG G, LI Y, MA F, et al.Copper exposure induced chicken hepatotoxicity:involvement of ferroptosis mediated by lipid peroxidation, ferritinophagy, and inhibition of FSP1-CoQ10 and Nrf2/SLC7A11/GPX4 axis.Biol Trace Elem Res, 4,2(4):1711-1721.
    [56] KLUGE M A, FETTERMAN J L, VITA J A.Mitochondria and endothelial function.Circ Res, 3,2(8):1171-1188.
    [57] SU R, WANG R, CAO H, et al.High copper levels promotes broiler hepatocyte mitochondrial permeability transition in vivo and in vitro.Biol Trace Elem Res, 1,4(1/3):636-646.
    [58] CHISTIAKOV D A, SHKURAT T P, MELNICHENKO A A, et al.The role of mitochondrial dysfunction in cardiovascular disease:a brief review.Ann Med, 8,0(2):121-127.
    [59] SHEMIAKOVA T, IVANOVA E, GRECHKO A V, et al.Mitochondrial dysfunction and DNA damage in the context of pathogenesis of atherosclerosis.Biomedicines, 0,8(6):166.
    [60] CICCARELLI G, CONTE S, CIMMINO G, et al.Mitochondrial dysfunction:the hidden player in the pathogenesis of atherosclerosis?.Int J Mol Sci, 3,4(2):1086.
    [61] HUYNH D T N, HEO K S.Role of mitochondrial dynamics and mitophagy of vascular smooth muscle cell proliferation and migration in progression of atherosclerosis.Arch Pharm Res, 1,4(12):1051-1061.
    [62] FRSTERMANN U, MNZEL T.Endothelial nitric oxide synthase in vascular disease:from marvel to menace.Circulation, 6,3(13):1708-1714.
    [63] PACHER P, BECKMAN J S, LIAUDET L.Nitric oxide and peroxynitrite in health and disease.Physiol Rev, 7,7(1):315-424.
    [64] STARKEBAUM G, HARLAN J M.Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine.J Clin Invest, 6,7(4):1370-1376.
    [65] DONG D, WANG B, YIN W, et al.Disturbance of copper homeostasis is a mechanism for homocysteine-induced vascular endothelial cell injury.PLoS One, 3,8(10):e76209.
    [66] XIAO Y, WANG T, SONG X, et al.Copper promotion of myocardial regeneration.Exp Biol Med(Maywood), 0,5(10):911-921.
    [67] ZHANG Z, QIU L, LIN C, et al.Copper-dependent and -independent hypoxia-inducible factor-1 regulation of gene expression.Metallomics, 4,6(10):1889-1893.
    [68] LIU X, ZHANG W, WU Z, et al.Copper levels affect targeting of hypoxia-inducible factor 1α to the promoters of hypoxia-regulated genes.J Biol Chem, 8,3(38):14669-14677.
    [69] MARTNEZ-GONZLEZ J, VARONA S, CAES L, et al.Emerging roles of lysyl oxidases in the cardiovascular system:new concepts and therapeutic challenges.Biomolecules, 9,9(10):610.
    [70] ASHINO T, SUDHAHAR V, URAO N, et al.Unexpected role of the copper transporter ATP7A in PDGF-induced vascular smooth muscle cell migration.Circ Res, 0,7(6):787-799.
    [71] KATTOOR A J, KANURI S H, MEHTA J L.Role of Ox-LDL and LOX-1 in atherogenesis.Curr Med Chem, 9,6(9):1693-1700.
    [72] ESTERBAUER H, GEBICKI J, PUHL H, et al.The role of lipid peroxidation and antioxidants in oxidative modification of LDL.Free Radic Biol Med, 2,3(4):341-390.
    [73] SONG X, WANG W, LI Z, et al.Association between serum copper and serum lipids in adults.Ann Nutr Metab, 8,3(4):282-289.
    [74] KAZEMI-BAJESTANI S M, GHAYOUR-MOBARHAN M, EBRAHIMI M, et al.Serum copper and zinc concentrations are lower in Iranian patients with angiographically defined coronary artery disease than in subjects with a normal angiogram.J Trace Elem Med Biol, 7,1(1):22-28.
    [75] LI Q, LIAO J, LEI C, et al.Metabolomics analysis reveals the effect of copper on autophagy in myocardia of pigs.Ecotoxicol Environ Saf, 1,3:112040.
    [76] PAN Y X, ZHUO M Q, LI D D, et al.SREBP-1 and LXRα pathways mediated Cu-induced hepatic lipid metabolism in zebrafish Danio rerio.Chemosphere, 9,5:370-379.
    [77] XU Y C, XU Y H, ZHAO T, et al.Waterborne Cu exposure increased lipid deposition and lipogenesis by affecting Wnt/β-catenin pathway and the β-catenin acetylation levels of grass carp Ctenopharyngodon idella.Environ Pollut, 0,3(Pt B):114420.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHANG Yaliu, AO Jingsheng, ZHANG Xiaodong. The Mechanism of Cuproptosis and Its Advancements in Atherosclerosis Research[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2024,32(10):890-898.

Copy
Share
Article Metrics
  • Abstract:297
  • PDF: 359
  • HTML: 0
  • Cited by: 0
History
  • Received:June 17,2024
  • Revised:July 12,2024
  • Online: October 22,2024
Article QR Code