Research progress on the role of lactate metabolism in atherosclerosis
Author:
Affiliation:

1.Chongqing Medical University, Chongqing 400016, China;2.the Second Affliated Hospital of Chongqing Medical University, Chongqing 400000, China)

Clc Number:

R363;R5

  • Article
  • | |
  • Metrics
  • |
  • Reference [75]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Atherosclerosis is a lipid-driven chronic inflammatory disease that typically forms plaques in large and medium-sized arteries and is a major cause of ischemic heart disease and stroke. Recent studies have found that during the progression of atherosclerosis, the level of cellular glycolysis in plaques increases, leading to excessive production and excretion of lactate and acidification of the extracellular environment, which may further affect the development of atherosclerosis through multiple mechanisms. This article reviews the research progress on the role of lactate metabolism in atherosclerosis, which may provide new therapeutic targets and directions for the prevention and treatment of atherosclerosis.

    Reference
    [1] 肖素军, 赵明.动脉粥样硬化与免疫.中国动脉硬化杂志, 2,0(4):277-286.XIAO S J, ZHAO M.Atherosclerosis and immunity.Chin J Arterioscler, 2,0(4):277-286.
    [2] LI L F, WANG M, MA Q X, et al.Role of glycolysis in the development of atherosclerosis.Am J Physiol Cell Physiol, 2,3(2):C617-C629.
    [3] RNI K, RAJAMKI K, NGUYEN S D, et al.Acidification of the intimal fluid:the perfect storm for atherogenesis.J Lipid Res, 5,6(2):203-214.
    [4] LI X L, YANG Y Y, ZHANG B, et al.Lactate metabolism in human health and disease.Signal Transduct Target Ther, 2,7(1):305.
    [5] ZHANG D, TANG Z Y, HUANG H, et al.Metabolic regulation of gene expression by histone lactylation.Nature, 9,4(7779):575-580.
    [6] YE L, JIANG Y, ZHANG M M.Crosstalk between glucose metabolism, lactate production and immune response modulation.Cytokine Growth Factor Rev, 2,8:81-92.
    [7] WARBURG O, WIND F, NEGELEIN E.The metabolism of tumors in the body.J Gen Physiol, 7,8(6):519-530.
    [8] ZHANG Y Y, ZHAI Z, DUAN J L, et al.Lactate:the mediator of metabolism and immunosuppression.Front Endocrinol (Lausanne), 2,3:901495.
    [9] KOCIANOVA E, PIATRIKOVA V, GOLIAS T.Revisiting the warburg effect with focus on lactate.Cancers (Basel), 2,4(24):6028.
    [10] CHEN Z, LIU M Q, LI L F, et al.Involvement of the Warburg effect in non-tumor diseases processes.J Cell Physiol, 8,3(4):2839-2849.
    [11] KOBAYASHI M, NARUMI K, FURUGEN A, et al.Transport function, regulation, and biology of human monocarboxylate transporter 1 (hMCT1) and 4 (hMCT4).Pharmacol Ther, 1,6:107862.
    [12] BALTAZAR F, AFONSO J, COSTA M, et al.Lactate beyond a waste metabolite:metabolic affairs and signaling in malignancy.Front Oncol, 0,0:231.
    [13] STROOPE C, NETTERSHEIM F S, COON B, et al.Dysregulated cellular metabolism in atherosclerosis:mediators and therapeutic opportunities.Nat Metab, 4,6(4):617-638.
    [14] 田清.动脉粥样硬化血管壁的Warburg效应.中国动脉硬化杂志, 8,6(5):536-540.TIAN Q.The warburg effect of vessel wall in atherosclerosis.Chin J Arterioscler, 8,6(5):536-540.
    [15] LEPPNEN O, BJRNHEDEN T, EVALDSSON M, et al.ATP depletion in macrophages in the core of advanced rabbit atherosclerotic plaques in vivo.Atherosclerosis, 6,8(2):323-330.
    [16] HOU P B, FANG J K, LIU Z H, et al.Macrophage polarization and metabolism in atherosclerosis.Cell Death Dis, 3,4(10):691.
    [17] 苑明川, 王莉, 王贺, 等.HIF-1α在动脉粥样硬化中的作用研究进展.中国动脉硬化杂志, 3,1(9):815-820.YUAN M C, WANG L, WANG H, et al.Research progress on the role of HIF-1α in atherosclerosis.Chin J Arterioscler, 3,1(9):815-820.
    [18] WANG Z H, PENG W B, ZHANG P, et al.Lactate in the tumour microenvironment:from immune modulation to therapy.EBioMedicine, 1,3:103627.
    [19] SINGH M, AFONSO J, SHARMA D, et al.Targeting monocarboxylate transporters (MCTs) in cancer:how close are we to the clinics?.Semin Cancer Biol, 3,0:1-14.
    [20] MOUTON A J, LI X, HALL M E, et al.Obesity, hypertension, and cardiac dysfunction:novel roles of immunometabolism in macrophage activation and inflammation.Circ Res, 0,6(6):789-806.
    [21] ESHGHJOO S, KIM D M, JAYARAMAN A, et al.Macrophage polarization in atherosclerosis.Genes (Basel), 2,3(5):756.
    [22] ZHOU H C, YAN X Y, YU W W, et al.Lactic acid in macrophage polarization:the significant role in inflammation and cancer.Int Rev Immunol, 2,1(1):4-18.
    [23] XUE S, SU Z, LIU D.Immunometabolism and immune response regulate macrophage function in atherosclerosis.Ageing Res Rev, 3,0:101993.
    [24] CASLIN H L, ABEBAYEHU D, ABDUL QAYUM A, et al.Lactic acid inhibits lipopolysaccharide-induced mast cell function by limiting glycolysis and ATP availability.J Immunol, 9,3(2):453-464.
    [25] SCHENZ J, HEILIG L, LOHSE T, et al.Extracellular lactate acts as a metabolic checkpoint and shapes monocyte function time dependently.Front Immunol, 1,2:729209.
    [26] TAN Z, XIE N, BANERJEE S, et al.The monocarboxylate transporter 4 is required for glycolytic reprogramming and inflammatory response in macrophages.J Biol Chem, 5,0(1):46-55.
    [27] MANOSALVA C, QUIROGA J, HIDALGO A I, et al.Role of lactate in inflammatory processes:friend or foe.Front Immunol, 1,2:808799.
    [28] HOQUE R, FAROOQ A, GHANI A, et al.Lactate reduces liver and pancreatic injury in Toll-like receptor-and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity.Gastroenterology, 4,6(7):1763-1774.
    [29] WANG L, HE H W, XING Z Q, et al.Lactate induces alternative polarization (M2) of macrophages under lipopolysaccharide stimulation in vitro through G-protein coupled receptor 81.Chin Med J (Engl), 0,3(14):1761-1763.
    [30] SUN Z R, HAN Y, SONG S B, et al.Activation of GPR81 by lactate inhibits oscillatory shear stress-induced endothelial inflammation by activating the expression of KLF2.IUBMB Life, 9,1(12):2010-2019.
    [31] NAREIKA A, HE L, GAME B A, et al.Sodium lactate increases LPS-stimulated MMP and cytokine expression in U937 histiocytes by enhancing AP-1 and NF-kappaB transcriptional activities.Am J Physiol Endocrinol Metab, 5,9(4):E534-E542.
    [32] MANOHARAN I, PRASAD P D, THANGARAJU M, et al.Lactate-dependent regulation of immune responses by dendritic cells and macrophages.Front Immunol, 1,2:691134.
    [33] KERN K, SCHFER S M G, COHNEN J, et al.The G2A receptor controls polarization of macrophage by determining their localization within the inflamed tissue.Front Immunol, 8,9:2261.
    [34] CUI X Q, XING R M, TIAN Y, et al.The G2A receptor deficiency aggravates atherosclerosis in rats by regulating macrophages and lipid metabolism.Front Physiol, 1,2:659211.
    [35] LIU X C, WANG J S, LAO M, et al.Study on the effect of protein lysine lactylation modification in macrophages on inhibiting periodontitis in rats.J Periodontol, 4,5(1):50-63.
    [36] JIN F Y, LI J, GUO J F, et al.Targeting epigenetic modifiers to reprogramme macrophages in non-resolving inflammation-driven atherosclerosis.Eur Heart J Open, 1,1(2):oeab022.
    [37] WANG Y N, CHEN L Q, ZHANG M J, et al.Exercise-induced endothelial Mecp2 lactylation suppresses atherosclerosis via the Ereg/MAPK signalling pathway.Atherosclerosis, 3,5:45-58.
    [38] GAFFNEY D O, JENNINGS E Q, ANDERSON C C, et al.Non-enzymatic lysine lactoylation of glycolytic enzymes.Cell Chem Biol, 0,7(2):206-213.e6.
    [39] WAN N, WANG N, YU S Q, et al.Cyclic immonium ion of lactyllysine reveals widespread lactylation in the human proteome.Nat Methods, 2,9(7):854-864.
    [40] JIANG W, LE J, WANG P Y, et al.Extracellular acidity reprograms macrophage metabolism and innate responsiveness.J Immunol, 1,6(12):3021-3031.
    [41] DING W, DUAN Y, QU Z, et al.Acidic microenvironment aggravates the severity of hepatic ischemia/reperfusion injury by modulating M1-polarization through regulating PPAR-γ signal.Front Immunol, 1,2:697362.
    [42] SUJAN P, BENCˇINA M, HAFNER-BRATKOVICˇ I.Differential effect of extracellular acidic environment on IL-1β released from human and mouse phagocytes.Int J Mol Sci, 0,1(19):7229.
    [43] CHAE B J, LEE K S, HWANG I, et al.Extracellular acidification augments NLRP3-mediated inflammasome signaling in macrophages.Immune Netw, 3,3(3):e23.
    [44] WANG K, GAN C Y, WANG H Y, et al.AFM detects the effects of acidic condition on the size and biomechanical properties of native/oxidized low-density lipoprotein.Colloids Surf B Biointerfaces, 1,8:112053.
    [45] SNECK M, KOVANEN P T, ORNI K.Decrease in pH strongly enhances binding of native, proteolyzed, lipolyzed, and oxidized low density lipoprotein particles to human aortic proteoglycans.J Biol Chem, 5,0(45):37449-37454.
    [46] KONG X L, TANG X Y, DU W J, et al.Extracellular acidosis modulates the endocytosis and maturation of macrophages.Cell Immunol, 3,1(1):44-50.
    [47] SURIYAPHOL P, FENSKE D, ZHRINGER U, et al.Enzymatically modified nonoxidized low-density lipoprotein induces interleukin-8 in human endothelial cells:role of free fatty acids.Circulation, 2,6(20):2581-2587.
    [48] LUO J, YANG H Y, SONG B L.Mechanisms and regulation of cholesterol homeostasis.Nat Rev Mol Cell Biol, 0,1(4):225-245.
    [49] WANG Y M, TAN M Y, ZHANG R J, et al.Acid-sensing ion channel 1/calpain1 activation impedes macrophage ATP-binding cassette protein A1-mediated cholesterol efflux induced by extracellular acidification.Front Physiol, 1,2:777386.
    [50] LEE-RUECKERT M, LAPPALAINEN J, LEINONEN H, et al.Acidic extracellular environments strongly impair ABCA1-mediated cholesterol efflux from human macrophage foam cells.Arterioscler Thromb Vasc Biol, 0,0(9):1766-1772.
    [51] LEE-RUECKERT M, LAPPALAINEN J, LEINONEN H, et al.Acidic extracellular pH promotes accumulation of free cholesterol in human monocyte-derived macrophages via inhibition of ACAT1 activity.Atherosclerosis, 0,2:1-7.
    [52] 刘娟, 欧翔, 刘情, 等.胞外酸化经ASIC1/RIP1途径抑制TFEB介导的巨噬细胞脂噬.生物化学与生物物理进展, 4,1(1):202-214.LIU J, OU X, LIU Q, et al.Extracellular acidification impairs macrophage lipophagy through ASIC1/RIP1 pathway.Prog Biochem Biophys, 4,1(1):202-214.
    [53] MOHINDRA R, AGRAWAL D K, THANKAM F G.Altered vascular extracellular matrix in the pathogenesis of atherosclerosis.J Cardiovasc Transl Res, 1,4(4):647-660.
    [54] BRUNINGER H, KRGER S, BACMEISTER L, et al.Matrix metalloproteinases in coronary artery disease and myocardial infarction.Basic Res Cardiol, 3,8(1):18.
    [55] PERVAIZ N, KATHURIA I, AITHABATHULA R V, et al.Matricellular proteins in atherosclerosis development.Matrix Biol, 3,0:1-23.
    [56] CARBONE F, VALENTE A, PEREGO C, et al.Ficolin-2 serum levels predict the occurrence of acute coronary syndrome in patients with severe carotid artery stenosis.Pharmacol Res, 1,6:105462.
    [57] 蔡田雨, 陈雪雷, 程锦, 等.芦荟苷通过下调HMGB1的表达抑制乳酸诱导的胃癌细胞增殖和迁移.南方医科大学学报, 1,1(11):1700-1706.CAI T Y, CHEN X L, CHENG J, et al.Aloin inhibits lactate-induced proliferation and migration of gastric cancer cells by down-regulating HMGB1 expression.J South Med Univ, 1,1(11):1700-1706.
    [58] WHITTINGTON A M, TURNER F S, BAARK F, et al.An acidic microenvironment in Tuberculosis increases extracellular matrix degradation by regulating macrophage inflammatory responses.PLoS Pathog, 3,9(7):e1011495.
    [59] WU X H, YE J A, CAI W X, et al.LDHA mediated degradation of extracellular matrix is a potential target for the treatment of aortic dissection.Pharmacol Res, 2,6:106051.
    [60] ZHANG F, GUO X Q, XIA Y P, et al.An update on the phenotypic switching of vascular smooth muscle cells in the pathogenesis of atherosclerosis.Cell Mol Life Sci, 1,9(1):6.
    [61] GROOTAERT M O J, BENNETT M R.Vascular smooth muscle cells in atherosclerosis:time for a re-assessment.Cardiovasc Res, 1,7(11):2326-2339.
    [62] YANG L B, GAO L, NICKEL T, et al.Lactate promotes synthetic phenotype in vascular smooth muscle cells.Circ Res, 7,1(11):1251-1262.
    [63] KIM J H, BAE K H, BYUN J K, et al.Lactate dehydrogenase-A is indispensable for vascular smooth muscle cell proliferation and migration.Biochem Biophys Res Commun, 7,2(1):41-47.
    [64] ZHU Y, HAN X Q, SUN X J, et al.Lactate accelerates vascular calcification through NR4A1-regulated mitochondrial fission and BNIP3-related mitophagy.Apoptosis, 0,5(5/6):321-340.
    [65] CIMMINO G, DI SERAFINO L, CIRILLO P.Pathophysiology and mechanisms of acute coronary syndromes:atherothrombosis, immune-inflammation, and beyond.Expert Rev Cardiovasc Ther, 2,0(5):351-362.
    [66] MASTENBROEK T G, VAN GEFFEN J P, HEEMSKERK J W M, et al.Acute and persistent platelet and coagulant activities in atherothrombosis.J Thromb Haemost, 5,3 (Suppl 1):S272-S280.
    [67] FLORA G D, NAYAK M K, GHATGE M, et al.Mitochondrial pyruvate dehydrogenase kinases contribute to platelet function and thrombosis in mice by regulating aerobic glycolysis.Blood Adv, 3,7(11):2347-2359.
    [68] KULKARNI P P, TIWARI A, SINGH N, et al.Aerobic glycolysis fuels platelet activation:small-molecule modulators of platelet metabolism as anti-thrombotic agents.Haematologica, 9,4(4):806-818.
    [69] MAEKAWA K Z N, SUGITA C, YAMASHITA A, et al.Higher lactate and purine metabolite levels in erythrocyte-rich fresh venous thrombus:potential markers for early deep vein thrombosis.Thromb Res, 9,7:136-144.
    [70] KOBZAR G, MARDLA V, SAMEL N.Lactate is a possible mediator of the glucose effect on platelet inhibition.Platelets, 4,5(4):239-245.
    [71] CURE E K, CURE M C.COVID-19 may predispose to thrombosis by affecting both vascular endothelium and platelets.Clin Appl Thromb Hemost, 0,6:1076029620933945.
    [72] ZHOU Y L, XU Z D, LIU Z Q.Impact of neutrophil extracellular traps on thrombosis formation:new findings and future perspective.Front Cell Infect Microbiol, 2,2:910908.
    [73] ZABCZYK M, NATORSKA J, JANION-SADOWSKA A, et al.Elevated lactate levels in acute pulmonary embolism are associated with prothrombotic fibrin clot properties:contribution of NETs formation.J Clin Med, 0,9(4):953.
    [74] AWASTHI D, NAGARKOTI S, SADAF S, et al.Glycolysis dependent lactate formation in neutrophils:a metabolic link between NOX-dependent and independent NETosis.Biochim Biophys Acta Mol Basis Dis, 9,5(12):165542.
    [75] WANG Y Y, WANG C P, LI J Y.Neutrophil extracellular traps:a catalyst for atherosclerosis.Mol Cell Biochem, 2024.DOI:10.1007/s11010-024-04931-3.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHANG Yun, ZHANG Diyuan, ZHU Xinting, LIANG Xing. Research progress on the role of lactate metabolism in atherosclerosis[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2024,32(10):907-915.

Copy
Share
Article Metrics
  • Abstract:162
  • PDF: 311
  • HTML: 0
  • Cited by: 0
History
  • Received:February 15,2024
  • Revised:April 28,2024
  • Online: October 22,2024
Article QR Code