Advance in biomechanical factors regulating angiogenesis in atherosclerotic plaques
Author:
Affiliation:

1.Biomedical Engineering Research Laboratory,West China School of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China;2.School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China)

Clc Number:

R5;R363

  • Article
  • | |
  • Metrics
  • |
  • Reference [46]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Angiogenesis within atherosclerotic plaques is a critical determinant of plaque stability. The biomechanical microenvironment, consisting of fluid shear force, plaque structural stress, and matrix stiffness, serves as significant factors in mediating plaque angiogenesis. Endothelial cells respond to mechanical signals and participate in plaques neovascularization through force chemical signal transduction mechanisms. This review provides an overview of the mechanisms by which mechanical factors regulate angiogenesis within plaques and offers a novel therapeutic approach for the prevention and treatment of atherosclerosis.

    Reference
    [1] 国家心血管病中心.中国心血管健康与疾病报告2023.北京:中国协和医科大学出版社, 2024.National Center for Cardiovascular Diseases.Annual report on cardiovascular health and diseases in China (2023).Beijing:Peking Union Medical College Press, 2024.
    [2] DUDLEY A C, GRIFFIOEN A W.Pathological angiogenesis:mechanisms and therapeutic strategies.Angiogenesis, 3,6(3):313-347.
    [3] 齐炳才, 靳琦文, 胡杰, 等.颈动脉粥样硬化斑块内新生血管的研究现状及进展.中国动脉硬化杂志, 1,9(4):359-2,8.QI B C, JIN Q W, HU J, et al.Research status and progress of carotid atherosclerotic intraplaque neovascularization.Chin J Arterioscler, 1,9(4):359-2,8.
    [4] LI S, XU Z, WANG Y, et al.Recent advances of mechanosensitive genes in vascular endothelial cells for the formation and treatment of atherosclerosis.Genes Dis, 4,1(3):101046.
    [5] KUMAMOTO M, NAKASHIMA Y, SUEISHI K.Intimal neovascularization in human coronary atherosclerosis:its origin and pathophysiological significance.Hum Pathol, 5,6(4):450-456.
    [6] ZENG Y, FU B M.Angiogenesis and microvascular permeability.Cold Spring Harb Perspect Med, 4,4(10):a041163.
    [7] YANG Z, YAO J, WANG J, et al.Ferrite-encapsulated nanoparticles with stable photothermal performance for multimodal imaging-guided atherosclerotic plaque neovascularization therapy.Biomater Sci, 1,9(16):5652-5664.
    [8] 王艳蕾, 颜旭, 刘春华, 等.动脉粥样硬化斑块内血管新生的研究进展.中国动脉硬化杂志, 1,9(8):732-736.WANG Y L, YAN X, LIU C H, et al.Research progress of angiogenesis in atherosclerotic plaque.Chin J Arterioscler, 1,9(8):732-736.
    [9] PEACH C J, MIGNONE V W, ARRUDA M A, et al.Molecular pharmacology of VEGF-A isoforms:binding and signalling at VEGFR2.Int J Mol Sci, 8,9(4):1264.
    [10] PREZ-GUTIRREZ L, FERRARA N.Biology and therapeutic targeting of vascular endothelial growth factor A.Nat Rev Mol Cell Biol, 3,4(11):816-834.
    [11] MA L L, GUO L L, LUO Y, et al.Cdc42 subcellular relocation in response to VEGF/NRP1 engagement is associated with the poor prognosis of colorectal cancer.Cell Death Dis, 0,1(3):171.
    [12] SOUILHOL C, SERBANOVIC-CANIC J, FRAGIADAKI M, et al.Endothelial responses to shear stress in atherosclerosis:a novel role for developmental genes.Nat Rev Cardiol, 0,7(1):52-63.
    [13] CHENG H, ZHONG W, WANG L, et al.Effects of shear stress on vascular endothelial functions in atherosclerosis and potential therapeutic approaches.Biomed Pharmacother, 3,8:114198.
    [14] HU J, QIU J, ZHENG Y, et al.AAMP regulates endothelial cell migration and angiogenesis through RhoA/Rho kinase signaling.Ann Biomed Eng, 6,4(5):1462-1474.
    [15] ZHOU M, YU Y, CHEN R, et al.Wall shear stress and its role in atherosclerosis.Front Cardiovasc Med, 3,0:1083547.
    [16] WANG X, SHEN Y, SHANG M, et al.Endothelial mechanobiology in atherosclerosis.Cardiovasc Res, 3,9(8):1656-1675.
    [17] DAVIS M J, EARLEY S, LI Y S, et al.Vascular mechanotransduction.Physiol Rev, 3,3(2):1247-1421.
    [18] VRANIC J E, ROMERO J M, HATSUKAMI T S, et al.Imaging features of vulnerable carotid atherosclerotic plaque and the associated clinical implications.Curr Treat Options Cardiovasc Med, 0,2(9):21.
    [19] MOERMAN A M, KORTELAND S, DILBA K, et al.The correlation between wall shear stress and plaque composition in advanced human carotid atherosclerosis.Front Bioeng Biotechnol, 1,9:828577.
    [20] QIU J, LEI D, HU J, et al.Effect of intraplaque angiogenesis to atherosclerotic rupture-prone plaque induced by high shear stress in rabbit model.Regen Biomater, 7,4(4):215-222.
    [21] LEI W, QIAN S, ZHU X, et al.Haemodynamic effects on the development and stability of atherosclerotic plaques in arterial blood vessel.Interdiscip Sci, 3,5(4):616-632.
    [22] SIASOS G, TSIGKOU V, COSKUN A U, et al.The role of shear stress in coronary artery disease.Curr Top Med Chem, 3,3(22):2132-2157.
    [23] SEIFERT R, KUHLMANN M T, ELIGEHAUSEN S, et al.Molecular imaging of MMP activity discriminates unstable from stable plaque phenotypes in shear-stress induced murine atherosclerosis.PLoS One, 8,3(10):e0204305.
    [24] PEDRIGI R M, MEHTA V V, BOVENS S M, et al.Influence of shear stress magnitude and direction on atherosclerotic plaque composition.R Soc Open Sci, 6,3(10):160588.
    [25] WANG Y, QIU J, LUO S, et al.High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis.Regen Biomater, 6,3(4):257-267.
    [26] WU S H, ZHANG F, YAO S, et al.Shear stress triggers angiogenesis of late endothelial progenitor cells via the PTEN/Akt/GTPCH/BH4 pathway.Stem Cells Int, 0,0:5939530.
    [27] JI Q, WANG Y L, XIA L M, et al.High shear stress suppresses proliferation and migration but promotes apoptosis of endothelial cells co-cultured with vascular smooth muscle cells via down-regulating MAPK pathway.J Cardiothorac Surg, 9,4(1):216.
    [28] TAMARGO I A, BAEK K I, KIM Y, et al.Flow-induced reprogramming of endothelial cells in atherosclerosis.Nat Rev Cardiol, 3,0(11):738-753.
    [29] CHENG L, SHI H, DU L, et al.Hemodynamic force dictates endothelial angiogenesis through MIEN1-ERK/MAPK-signaling axis.J Cell Physiol, 4,9(4):e31177.
    [30] GU S Z, BENNETT M R.Plaque structural stress:detection, determinants and role in atherosclerotic plaque rupture and progression.Front Cardiovasc Med, 2,9:875413.
    [31] COSTOPOULOS C, TIMMINS L H, HUANG Y, et al.Impact of combined plaque structural stress and wall shear stress on coronary plaque progression, regression, and changes in composition.Eur Heart J, 9,0(18):1411-1422.
    [32] GU S Z, AHMED M, HUANG Y, et al.Abstract 10038:combined low endothelial shear stress and high plaque structural stress heterogeneity predicts Non-Culprit major adverse cardiovascular events; insights from the PROSPECT study.Circulation, 2,6(Suppl 1):A10038.
    [33] BROWN A J, TENG Z, EVANS P C, et al.Role of biomechanical forces in the natural history of coronary atherosclerosis.Nat Rev Cardiol, 6,3(4):210-220.
    [34] WANG Y, SHI R, ZHAI R, et al.Matrix stiffness regulates macrophage polarization in atherosclerosis.Pharmacol Res, 2,9:106236.
    [35] CHENG L, YUE H, ZHANG H, et al.The influence of microenvironment stiffness on endothelial cell fate:implication for occurrence and progression of atherosclerosis.Life Sci, 3,4:122233.
    [36] BERGER A J, RENNER C M, HALE I, et al.Scaffold stiffness influences breast cancer cell invasion via EGFR-linked mena upregulation and matrix remodeling.Matrix Biol, 0,5/86:80-93.
    [37] XU Z, CHEN Y, WANG Y, et al.Matrix stiffness, endothelial dysfunction and atherosclerosis.Mol Biol Rep, 3,0(8):7027-7041.
    [38] KRETSCHMER M, RDIGER D, ZAHLER S.Mechanical aspects of angiogenesis.Cancers (Basel), 1,3(19):4987.
    [39] 陈启予, 王雯, 袁长永, 等.基质刚度调控内皮细胞出芽的研究进展.中国修复重建外科杂志, 3,7(2):202-207.CHEN Q Y, WANG W, YUAN C Y, et al.Research progress of matrix stiffness in regulating endothelial cell sprouting.Chin J Repa Reconstr Surg, 3,7(2):202-207.
    [40] DAVIDSON C D, WANG W Y, ZAIMI I, et al.Cell force-mediated matrix reorganization underlies multicellular network assembly.Sci Rep, 9,9(1):12.
    [41] CABRAL-PACHECO G A, GARZA-VELOZ I, CASTRUITA-DE LA ROSA C, et al.The roles of matrix metalloproteinases and their inhibitors in human diseases.Int J Mol Sci, 0,1(24):9739.
    [42] HOOGLUGT A, VAN DER STOEL M M, BOON R A, et al.Endothelial YAP/TAZ signaling in angiogenesis and tumor vasculature.Front Oncol, 0,0:612802.
    [43] GUO Y, MEI F, HUANG Y, et al.Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis.Bioact Mater, 2,7:364-376.
    [44] VAN DER STOEL M, SCHIMMEL L, NAWAZ K, et al.DLC1 is a direct target of activated YAP/TAZ that drives collective migration and sprouting angiogenesis.J Cell Sci, 0,3(3):jcs239947.
    [45] WANG Y, ZHANG X, WANG W, et al.Integrin αvβ5/Akt/Sp1 pathway participates in matrix stiffness-mediated effects on VEGFR2 upregulation in vascular endothelial cells.Am J Cancer Res, 0,0(8):2635-2648.
    [46] KRETSCHMER M, MAMISTVALOV R, SPRINZAK D, et al.Matrix stiffness regulates Notch signaling activity in endothelial cells.J Cell Sci, 3,6(2):jcs260442.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

PENG Chengxiu, CHEN Hanxiao, ZENG Yuhan, FENG Yujing, LI Yuhao, SHEN Yang. Advance in biomechanical factors regulating angiogenesis in atherosclerotic plaques[J]. Editorial Office of Chinese Journal of Arteriosclerosis,2025,33(2):102-107.

Copy
Share
Article Metrics
  • Abstract:37
  • PDF: 421
  • HTML: 0
  • Cited by: 0
History
  • Received:April 09,2024
  • Revised:June 04,2024
  • Online: March 05,2025
Article QR Code