基于机器学习的Stanford A型主动脉夹层术后院内主要不良事件的风险预测研究
DOI:
作者:
作者单位:

(1.天津医科大学生理学与病理生理学系 天津医学表观遗传学协同创新中心,天津市 300070;2.首都医科大学附属 北京安贞医院 北京市心肺血管疾病研究所血管生物研究室 教育部重塑相关心血管疾病重点实验室 心血管重大疾病 防治协同创新中心,北京市 100029;3.北京大学公共卫生学院流行病学与生物统计学系,北京市 100191)

作者简介:

裴旺,硕士研究生,研究方向为心血管病因学,E-mail为peiwang110@126.com。通信作者杜杰,教授,博士研究生导师,研究方向为心血管病因学,E-mail为jiedu@yahoo.com。

通讯作者:

基金项目:

国家自然科学基金项目(81930014)


Risk prediction of in-hospital major adverse events of postoperative Stanford type A aortic dissection based on machine learning
Author:
Affiliation:

1.Department of Physiology and Pathophysiology of Tianjin Medical University & Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin 300070, China;2.Beijing Anzhen Hospital Affiliated to Capital Medical University & Department of Vascular Biology, Beijing Institute of Heart, Lung and Blood Vessel Disease & Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education & Collaborative Innovation Center for Cardiovascular Disorders, Beijing 100029, China;3.Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 基于临床一般变量,使用机器学习方法构建模型,用于预测手术治疗后的Stanford A型主动脉夹层(TAAD)患者院内主要不良事件(MAE)的发生风险。方法 纳入2013年1月至2017年12月在北京安贞医院进行手术治疗的TAAD患者1 641例,收集患者个体特征变量、临床体征以及入院首次临床血清标志物等。结局定义为院内MAE,包含院内死亡、夹层后新发急性心脏衰竭、呼吸衰竭、神经系统障碍、急性肾功能衰竭、感染,以及无计划的二次开胸。使用机器学习筛选变量后构建模型;采用受试者工作特征曲线(ROC)分析模型预测院内MAE的能力;使用净重新分类指数(NRI)和整体鉴别指数(IDI)对新模型与临床常用模型进行比较,评价新模型在预测TAAD术后预后方面的改善效果;最后建立列线图预测TAAD术后患者院内MAE发生风险。结果 使用机器学习筛选变量,确定了由D-二聚体、肌酸激酶同工酶、尿素、白细胞计数、年龄、异常心电图和手术时间组成的TAAD术后院内MAE的风险预测模型,模型预测院内MAE的ROC曲线下面积为0.776(95%CI 0.718~0.734,P<0.001)。与临床常用模型比较,本研究构建的模型其NRI为0.654(95%CI 0.540~0.750,P<0.001),IDI为0.136(95%CI 0.117~0.155,P<0.001),提高了对TAAD术后院内MAE的预测能力。将模型通过列线图形式呈现,列线图模型评分能够评估TAAD术后发生院内MAE的风险。结论 基于机器学习使用患者临床变量构建模型,该模型综合评估患者个体特征变量、炎症水平、脏器受损状况以及手术情况,对TAAD患者术后院内MAE具有预测价值。

    Abstract:

    Aim To build a model based on general clinical variables and machine learning method to predict the risk of in-hospital major adverse events (MAE) in patients with Stanford a type aortic dissection (TAAD) after surgery. Methods A total of 1 641 patients with TAAD who underwent surgical treatment in Beijing Anzhen Hospital from January 2013 to December 2017 were included in this study. The individual characteristic variables, clinical signs and the first clinical serum markers on admission were collected. The outcome was defined as in-hospital MAE, including in-hospital death, new acute heart failure after mezzanine, respiratory failure, nervous system disorders, acute renal failure, infection, and unplanned secondary chest opening. The model was constructed after using machine learning to screen variables. Receiver operating characteristic curve (ROC) was used to analyze the ability of the model to predict in-hospital MAE. Net reclassification index (NRI) and integrated discrimination index (IDI) were used to compare the new model with the commonly used clinical models to evaluate the improvement effect of the new model in predicting the prognosis of postoperative TAAD. Finally, the nomogram was established to predict the risk of MAE in patients after TAAD operation. Results The risk prediction model of in-hospital MAE after TAAD operation was determined by using machine learning screening variables, which consisted of D-dimer, creatine kinase isoenzyme, urea, leukocyte count, age, abnormal electrocardiogram and operation time. The area under curve of ROC of in-hospital MAE predicted by the model was 0.776 (95%CI 0.718-0.734, P<0.001). Compared with the commonly used clinical models, the NRI of our model was 0.654 (95%CI 0.540-0.750, P<0.001), and the IDI was 0.136 (95%CI 0.117-0.155, P<0.001), which improved the predictive ability for in-hospital MAE after TAAD operation. The model was presented in the form of nomogram, and the score of nomogram model could evaluate the risk of in-hospital MAE after TAAD operation. ConclusionsBased on machine learning, a model is constructed by using clinical variables of patients. The model can comprehensively evaluate individual characteristic variables, inflammation level, organ damage status and operation status of patients, which has predictive value for postoperative in-hospital MAE of patients with TAAD.

    参考文献
    相似文献
    引证文献
引用本文

裴旺,王雪,姜文溪,安美玉,薛冰洁,高培,王媛,杜杰.基于机器学习的Stanford A型主动脉夹层术后院内主要不良事件的风险预测研究[J].中国动脉硬化杂志,2021,29(4):332~338.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2021-02-22
  • 最后修改日期:2021-03-17
  • 录用日期:
  • 在线发布日期: 2021-04-14