脂肪组织纤维化的研究进展
作者:
作者单位:

(海军军医大学药学系临床药学教研室,上海市200433)

作者简介:

陈缘静,硕士研究生,研究方向为药学,E-mail:1040445984@qq.com。通信作者孙旸,副教授,硕士研究生导师,研究方向为药理学,E-mail:DawnySun@126.com。

基金项目:

国家自然科学基金项目(82073907);上海市“科技创新行动计划”(20ZR1470100和20S11902700)


The research progress of adipose tissue fibrosis
Author:
Affiliation:

Department of Clinical Pharmacology, School of Pharmacy, Naval Medical University, Shanghai 200433, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
    摘要:

    脂肪组织纤维化是指脂肪组织的细胞外基质发生不当重塑并造成异常沉积。脂肪组织纤维化作为脂肪组织功能障碍的重要标志,与肥胖、胰岛素抵抗等代谢功能障碍密切相关。而逆转脂肪组织纤维化,有助于恢复脂肪组织功能、改善胰岛素抵抗,进而改善肥胖等患者代谢异常情况。文章总结了脂肪组织纤维化病理机制的最新研究进展以及逆转脂肪组织纤维化的潜在药物靶点,以期为深入了解这一病理过程,研发治疗药物提供方向。

    Abstract:

    Adipose tissue fibrosis is caused by improper remodeling of the extracellular matrix, which leads to abnormal deposition in adipose tissue. As the hallmark of adipose tissue dysfunction, adipose tissue fibrosis has a close relationship with metabolic dysfunction such as obesity and insulin resistance. Therefore, reversing adipose tissue fibrosis can restore the function of adipose tissue, enhance the sensibility of insulin and then improve patients' metabolic abnormalities such as obesity. This review summarizes the latest research progress in the pathological mechanism of adipose tissue fibrosis and the potential drug targets for reversing adipose tissue fibrosis, in order to provide a greater insight into this pathological process and provide the direction of drug development.

    参考文献
    [1] MARCELIN G, SILVEIRA A L M, MARTINS L B, et al.Deciphering the cellular interplays underlying obesity-induced adipose tissue fibrosis.J Clin Invest, 9,9(10):4032-4040.
    [2] RUIZ-OJEDA F J, MNDEZ-GUTIRREZ A, AGUILERA C M, et al.Extracellular matrix remodeling of adipose tissue in obesity and metabolic diseases.Int J Mol Sci, 9,0(19):4888.
    [3] GORWOOD J, BOURGEOIS C, MANTECON M, et al.Impact of HIV/simian immunodeficiency virus infection and viral proteins on adipose tissue fibrosis and adipogenesis.AIDS, 9,3(6):953-964.
    [4] VALLE A, LECARPENTIER Y, GUILLEVIN R, et al.Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR-γ in radiation-induced fibrosis.Oncotarget, 7,8(52):90579-90604.
    [5] 石晓东, 阮承超.脂肪功能紊乱参与心血管稳态失衡调控的研究进展.中国动脉硬化杂志, 2,0(1):21-26.SHI X D, RUAN C C.Research progress of adipose dysfunction involved in the regulation of cardiovascular homeostasis imbalance.Chin J Arterioscler, 2,0(1):21-26.
    [6] LIN D, CHUN TH, KANG L.Adipose extracellular matrix remodelling in obesity and insulin resistance.Biochem Pharmacol, 6,9:8-16.
    [7] MAK K M, PNG C Y M, LEE D J.Type V collagen in health, disease, and fibrosis.Anat Rec, 6,9(5):613-629.
    [8] HASEGAWA Y T A, IKEDA K, CHEN Y, et al.Repression of adipose tissue fibrosis through a PRDM16-GTF2IRD1 complex improves systemic glucose homeostasis.Cell Metab, 8,7(1):180-194.e6.
    [9] CREWE C, AN Y A, SCHERER P E.The ominous triad of adipose tissue dysfunction:inflammation, fibrosis, and impaired angiogenesis.J Clin Invest, 7,7(1):74-82.
    [10] BUECHLER C, KRAUTBAUER S, EISINGER K.Adipose tissue fibrosis.World J Diabetes, 5,6(4):548-553.
    [11] TANAKA M.Molecular mechanism of obesity-induced adipose tissue inflammation; The role of Mincle in adipose tissue fibrosis and ectopic lipid accumulation.Endocr J, 0,7(2):107-111.
    [12] BOURLIER V, SENGENS C, ZAKAROFF-GIRARD A, et al.TGFbeta family members are key mediators in the induction of myofibroblast phenotype of human adipose tissue progenitor cells by macrophages.PLoS One, 2,7(2):e31274.
    [13] 孙恒, 齐潇雁, 肖新华.肥胖对动脉粥样硬化的影响.中国动脉硬化杂志, 9,7(10):829-834.SUN H, QI X Y, XIAO X H.The impact of obesity on atherosclerosis.Chin J Arterioscler, 9,7(10):829-834.
    [14] HASEGAWA Y T A.New perspectives on obesity-induced adipose tissue fibrosis and related clinical manifestations.Endocr J, 2,9(7):739-748.
    [15] CATALN V, GMEZ-AMBROSI J, RODRGUEZ A, et al.Role of extracellular matrix remodelling in adipose tissue pathophysiology:relevance in the development of obesity.Histol Histopathol, 2,7(12):1515-1528.
    [16] WILLIAMS L, LAYTON T, YANG N, et al.Collagen Ⅵ as a driver and disease biomarker in human fibrosis.FEBS J, 2,9(13):3603-3629.
    [17] BERG G, BARCHUK M, MIKSZTOWICZ V.Behavior of metalloproteinases in adipose tissue, liver and arterial wall:an update of extracellular matrix remodeling.Cells, 9,8(2):158.
    [18] CHRISTIAENS V, LIJNEN H R.Role of the fibrinolytic and matrix metalloproteinase systems in development of adipose tissue.Arch Physiol Biochem, 6,2(4/5):254-259.
    [19] LARONHA H, CALDEIRA J.Structure and function of human matrix metalloproteinases.Cells Basel, 0,9(5):1076.
    [20] LI X, ZHAO Y S, CHEN C, et al.Critical role of matrix metalloproteinase 14 in adipose tissue remodeling during obesity.Mol Cell Biol, 0,0(8):e00564-19.
    [21] WU Y Y, LEE M J, IDO Y, et al.High-fat diet-induced obesity regulates MMP3 to modulate depot- and sex-dependent adipose expansion in C57BL/6J mice.Am J Physiol Endocrinol Metab, 7,2(1):E58-E71.
    [22] FENECH M, GAVRILOVIC J, TURNER J.Effect of tissue inhibitor of metalloproteinases 3 on DLK1 shedding in cultured human pre-adipocytes and implications for adipose tissue remodelling.Lancet, 5,5(Suppl 1):S35.
    [23] SAKAMURI S S V P, WATTS R, TAKAWALE A, et al.Absence of tissue inhibitor of metalloproteinase-4 (TIMP4) ameliorates high fat diet-induced obesity in mice due to defective lipid absorption.Sci Rep, 7,7(1):6210.
    [24] PASTEL E, PRICE E, SJHOLM K, et al.Lysyl oxidase and adipose tissue dysfunction.Metabolism, 8,8:118-127.
    [25] MARCELIN G, GAUTIER E L, CLMENT K.Adipose tissue fibrosis in obesity:etiology and challenges.Annu Rev Physiol, 2,4:135-155.
    [26] HALBERG N, KHAN T, TRUJILLO M E, et al.Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue.Mol Cell Biol, 9,9(16):4467-4483.
    [27] WARBRICK I, RABKIN S W.Hypoxia-inducible factor 1-alpha (HIF-1α) as a factor mediating the relationship between obesity and heart failure with preserved ejection fraction.Obes Rev, 9,0(5):701-712.
    [28] LI X L, LI J, WANG L L, et al.The role of metformin and resveratrol in the prevention of hypoxia-inducible factor 1α accumulation and fibrosis in hypoxic adipose tissue.Br J Pharmacol, 6,3(12):2001-2015.
    [29] HEROLD J, KALUCKA J.Angiogenesis in adipose tissue:the interplay between adipose and endothelial cells.Front Physiol, 0,1:624903.
    [30] AN Y A, SUN K, JOFFIN N, et al.Angiopoietin-2 in white adipose tissue improves metabolic homeostasis through enhanced angiogenesis.Elife, 7,6:e24071.
    [31] SUN K, WERNSTEDT ASTERHOLM I, KUSMINSKI C M, et al.Dichotomous effects of VEGF-A on adipose tissue dysfunction.Proc Natl Acad Sci U S A, 2,9(15):5874-5879.
    [32] UNAMUNO X, GMEZ-AMBROSI J, RODRGUEZ A, et al.Adipokine dysregulation and adipose tissue inflammation in human obesity.Eur J Clin Invest, 8,8(9):e12997.
    [33] 殷珵烨, 袁佳栎, 葛卓望, 等.血管周围脂肪组织在动脉粥样硬化炎症发展中的作用.中国动脉硬化杂志, 2,0(8):719-724.YIN C Y, YUAN J L, GE Z W, et al.Roles of perivascular adipose tissue in inflammation during the development of ather-osclerosis.Chin J Arterioscler, 2,0(8):719-724.
    [34] TANAKA M, IKEDA K, SUGANAMI T K Y I, et al.Macrophage-inducible C-type lectin underlies obesity-induced adipose tissue fibrosis.Nat Commun, 4,5:4982.
    [35] ICHIOKA M, SUGANAMI T K Y I, TSUDA N, et al.Increased expression of macrophage-inducible C-type lectin in adipose tissue of obese mice and humans.Diabetes, 1,0(3):819-826.
    [36] GURUNG P, MOUSSA K, ADAMS-HUET B, et al.Increased mast cell abundance in adipose tissue of metabolic syndrome:relevance to the proinflammatory state and increased adipose tissue fibrosis.Am J Physiol Endocrinol Metab, 9,6(3):E504-E509.
    [37] MARCELIN G, CLEMENT K.Adipose tissue fibrosis:an aggravating factor in obesity .Med Sci (Paris), 8,4(5):424-431.
    [38] YANG X H, PANDE S, KOZA R A, et al.Sprouty1 regulates gonadal white adipose tissue growth through a PDGFRα/β-Akt pathway.Adipocyte, 1,0(1):574-586.
    [39] RABHI N, DESEVIN K, BELKINA A C, et al.Obesity-induced senescent macrophages activate a fibrotic transcriptional program in adipocyte progenitors.Life Sci Alliance, 2,5(5):e202101286.
    [40] MARCELIN G, FERREIRA A, LIU Y J, et al.A PDGFRα-mediated switch toward CD9 high adipocyte progenitors controls obesity-induced adipose tissue fibrosis.Cell Metab, 7,5(3):673-685.
    [41] SHAO M L, HEPLER C, ZHANG Q B, et al.Pathologic HIF1α signaling drives adipose progenitor dysfunction in obesity.Cell Stem Cell, 1,8(4):685-701.e7.
    [42] MUNIAPPAN L, JAVIDAN A, JIANG W H, et al.Calpain inhibition attenuates adipose tissue inflammation and fibrosis in diet-induced obese mice.Sci Rep, 7,7(1):14398.
    [43] JOHANSEN M L, IBARROLA J, FERNNDEZ-CELIS A, et al.The mineralocorticoid receptor antagonist eplerenone suppresses interstitial fibrosis in subcutaneous adipose tissue in patients with type 2 diabetes.Diabetes, 1,0(1):196-203.
    [44] ANVARI G, BELLAS E.Hypoxia induces stress fiber formation in adipocytes in the early stage of obesity.Sci Rep, 1,1(1):21473.
    [45] PELLEGRINELLI V, RODRIGUEZ-CUENCA S, ROUAULT C, et al.Dysregulation of macrophage PEPD in obesity determines adipose tissue fibro-inflammation and insulin resistance.Nat Metab, 2,4(4):476-494.
    [46] MARQUES A P, CUNHA-SANTOS J, LEAL H, et al.Dipeptidyl peptidase Ⅳ (DPP-Ⅳ) inhibition prevents fibrosis in adipose tissue of obese mice.Biochim Biophys Acta Gen Subj, 8,2(3):403-413.
    [47] GLUAIS-DAGORN P, FORETZ M, STEINBERG G R, et al.Direct AMPK activation corrects NASH in rodents through metabolic effects and direct action on inflammation and fibrogenesis.Hepatol Commun, 2,6(1):101-119.
    [48] 罗婷.二甲双胍通过激活AMPK抑制肥胖引起的脂肪组织纤维化和胰岛素抵抗.重庆:重庆医科大学, 2016.LUO T.AMPK activation by metformin suppresses abnormal adipose tissue extracellular matrix remodeling and ameliorates insulin resistance in obesity.Chongqing:Chongqing Medical University, 2016.
    [49] LUO Z M, LEI H, SUN Y, et al.Orosomucoid, an acute response protein with multiple modulating activities.J Physiol Biochem, 5,1(2):329-340.
    [50] LEI H, SUN Y, LUO Z M, et al.Fatigue-induced orosomucoid 1 acts on C-C chemokine receptor type 5 to enhance muscle endurance.Sci Rep, 6,6:18839.
    [51] QIN Z, WAN J J, SUN Y, et al.ORM promotes skeletal muscle glycogen accumulation via CCR5-Activated AMPK pathway in mice.Front Pharmacol, 6,7:302.
    [52] SUN Y, YANG Y L, QIN Z, et al.The acute-phase protein orosomucoid regulates food intake and energy homeostasis via leptin receptor signaling pathway.Diabetes, 6,5(6):1630-1641.
    [53] WANG P Y, FENG J Y, ZHANG Z, et al.The adipokine orosomucoid alleviates adipose tissue fibrosis via the AMPK pathway.Acta Pharmacol Sin, 2,3(2):367-375.
    [54] WANG L J, YE X, HUA Y Y, et al.Berberine alleviates adipose tissue fibrosis by inducing AMP-activated kinase signaling in high-fat diet-induced obese mice.Biomed Pharmacother, 8,5:121-129.
    [55] HE J J, PENG H, WANG M F, et al.Isoliquiritigenin inhibits TGF-β1-induced fibrogenesis through activating autophagy via PI3K/AKT/mTOR pathway in MRC-5 cells.Acta Biochim Biophys Sin (Shanghai), 0,2(8):810-820.
    相似文献
    引证文献
引用本文

陈缘静,陈弋,刘霞,孙旸.脂肪组织纤维化的研究进展[J].中国动脉硬化杂志,2023,31(5):432~440.

复制
分享
文章指标
  • 点击次数:687
  • 下载次数: 1270
历史
  • 收稿日期:2022-08-19
  • 最后修改日期:2023-01-21
  • 在线发布日期: 2023-05-19