冠状动脉CT显示粥样硬化斑块列线图预测模型的构建及斑块稳定性的影响因素
作者:
作者单位:

(1.安康市中心医院影像中心,陕西省安康市725000;2.安康市疾病预防控制中心结核病防治科,陕西省安康市725000;3.安康市中心医院感染性疾病科, 陕西省安康市725000;4.十堰市竹山县人民医院内分泌科,湖北省竹山县442200;5.随州市中医医院心血管内科,湖北省随州市441300)

作者简介:

唐远雪,主管技师,主要研究方向为心血管疾病的CT成像,E-mail:2903691703@qq.com。

基金项目:

陕西省重点研发计划项目(2020SF-247)


Construction of nomogram prediction model of atherosclerotic plaque shown on coronary CT and the influencing factors of plaque stability
Author:
Affiliation:

1.The Medical Imaging Centre, Ankang Central Hospital, Ankang, Shaanxi 725000, China;2.Department of Tuberculosis Prevention and Control, Ankang Center for Disease Control and Prevention, Ankang, Shaanxi 725000, China;3.Department of Infectious Diseases, Ankang Central Hospital, Ankang, Shaanxi 725000, China;4.Department of Endocrinology, Zhushan People's Hospital, Zhushan, Hubei 442200, China;5.Department of Cardiovascular, Suizhou Hospital of Traditional Chinese Medicine, Suizhou, Hubei 441300, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | |
    摘要:

    目的]探讨胸部计算机断层成像(CT)显示冠状动脉粥样硬化斑块(CAP)列线图模型的构建及斑块稳定性的相关影响因素。 [方法]将2020年1月─2021年10月接受CT扫描的心血管疾病高危人群的资料进行回顾性横断面研究,收集患者的基本情况(包括性别、年龄等)、既往史、合并疾病、血压、血生物化学指标等方面的信息。根据CT显示冠状动脉情况分为有CAP和无CAP两组。LASSO回归交叉验证法对数据降维,构建列线图模型并验证,决策曲线评估模型的应用价值,最优尺度回归分析评估CAP-CT值的影响因素。 [结果]纳入分析的CAP患者240例,非CAP患者52例;调节参数(λ+1se)后,年龄、尿酸、估算的肾小球滤过率(eGFR)为非零特征的变量,有统计学意义的年龄及eGFR构建列线图模型,ROC曲线下面积为0.759(95%CI:0.691~0.828)、灵敏度为73.8%、特异度为71.2%;Hosmer-Lemeshow检验显示模型拟合度较好(χ2=11.846,P=0.158),预测准确性为82.2%;Bootstrap重抽样内部验证平均绝对误差为0.029,校正曲线与理想曲线基本拟合,决策曲线显示列线图模型在风险阈值为0.10~0.40时有良好的净获益;合并糖尿病和β2微球蛋白(β2-MG)是影响CAP-CT值的独立风险因素(均P<0.05),重要性分别为0.121、0.564。 [结论]重视肾脏功能的保护及血糖达标将有利于降低CAP的形成及增加CAP稳定性,尤其在选择用药时,应该更多关注肾功能。

    Abstract:

    Aim To discuss the construction of the nomogram model of coronary atherosclerotic plaque (CAP) shown on chest computed tomography (CT) and the influencing factors of plaque stability. Methods The data of patients at high risk of cardiovascular disease that received CT examination from January 2020 to October 2021 were collected for a retrospective cross-sectional study. Basic information (including gender and age), medical history, complications, blood pressure, blood biochemical indicators, etc. of the patients were collected. According to their coronary artery conditions shown by CT imaging, the patients were divided into CAP group and CAP-free group. The data were then reduced by using LASSO regression cross-validation. The nomogram model was built and validated, and its application value was evaluated by the decision curve. In the end, the influencing factors of CAP-CT value were evaluated by optimal scaling regression. Results There were 240 patients with CAP and 52 patients without CAP included in the research. After adjusting the parameter (λ+1se), age, uric acid, estimated glomerular filtration rate (eGFR) were non-zero variables. The statistically significant age and eGFR were used to build the nomogram model. Area under ROC curve was 0.759(95%CI:0.691~0.828), sensitivity was 73.8%, specificity was 71.2%. Hosmer-Lemeshow test indicated good model fit (χ2=11.846, P=0.158). The prediction accuracy was 82.2%. Mean absolute error of Bootstrap resampling internal verification was 0.029. The calibration curve basically fits the ideal curve. According to the decision curve, the nomogram model shows good net benefits within the risk threshold of 0.10~0.40. Combined diabetes mellitus and β2-microglobulin (β2-MG) were independent risk factors for CAP-CT values (both P<0.05), with the importance of 0.121 and 0.564, respectively. Conclusion Emphasis on the protection of renal function and glycemic compliance will help to reduce the formation of CAP and increase CAP stability. In particular, more attention should be paid to renal function when selecting medications.

    参考文献
    [1] World Health Organization.Global Health Estimates:life expectancy and leading causes of death and disability[EB/OL].[2022-05-10].https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
    [2] OTSUKA K, FUKUDA S, TANAKA A, et al.Napkin-ring sign on coronary CT angiography for the prediction of acute coronary syndrome.JACC Cardiovasc Imaging, 3,6(4):448-457.
    [3] ASAUMI Y, NOGUCHI T, MORITA Y, et al.High-intensity plaques on noncontrast T1-weighted imaging as a predictor of periprocedural myocardial injury.JACC Cardiovasc Imaging, 5,8(6):741-743.
    [4] LEE J M, BANG J I, KOO B K, et al.Clinical relevance of 18F-sodium fluoride positron-emission tomography in noninvasive identification of high-risk plaque in patients with coronary artery disease.Circ Cardiovasc Imaging, 7,0(11):e006704.
    [5] MAYER J, WURSTER T H, SCHAEFFTER T, et al.Imaging coronary plaques using 3D motion-compensated [18F]NaF PET/MR.Eur J Nucl Med Mol Imaging, 1,8(8):2455-2465.
    [6] NOGUCHI T, NAKAO K, ASAUMI Y, et al.Noninvasive coronary plaque imaging.J Atheroscler Thromb, 8,5(4):281-293.
    [7] World Health Organization.Guidelines for controlling and monitoring the tobacco epidemic.Geneva:Tobacco or Health Programme, WHO, 1997.
    [8] 杨月欣, 张环美.《中国居民膳食指南(2016)》简介.营养学报, 6,8(3):209-217.YANG Y X, ZHANG H M.Introduction to the dietary guidelines for chinese residents (2016).Acta Nutrimenta Sinica, 6,8(3):209-217.
    [9] American Diabetes Association.Classification and diagnosis of diabetes:standards of medical care in diabetes-2018.Diabetes Care, 8,1(Suppl 1):S13-S27.
    [10] CHOI T Y, LI D, NASIR K, et al.Differences in coronary atherosclerotic plaque burden and composition according to increasing age on computed tomography angiography.Acad Radiol, 3,0(2):202-208.
    [11] AYOUB C, KRITHARIDES L, YAM Y, et al.Prognostic value of age adjusted segment involvement score as measured by coronary computed tomography:a potential marker of vascular age.Heart Vessels, 8,3(11):1288-1300.
    [12] CSISZAR A, SOSNOWSKA D, WANG M, et al.Age-associated proinflammatory secretory phenotype in vascular smooth muscle cells from the non-human primate Macaca mulatta:reversal by resveratrol treatment.J Gerontol A Biol Sci Med Sci, 2,7(8):811-820.
    [13] HU B A, SAI W W, YUAN J, et al.PGF2α-FP receptor ameliorates senescence of VSMCs in vascular remodeling by Src/PAI-1 signal pathway.Oxid Med Cell Longev, 2,2:2908261.
    [14] ZUCCOLO E, BADI I, SCAVELLO F, et al.The microRNA-34a-induced senescence-associated secretory phenotype (SASP) favors vascular smooth muscle cells calcification.Int J Mol Sci, 0,1(12):4454.
    [15] QIU H, ZHU Y, SUN Z, et al.Short communication:vascular smooth muscle cell stiffness as a mechanism for increased aortic stiffness with aging.Circ Res, 0,7(5):615-619.
    [16] 乔莞宁, 陈虹印, 张扬.氧化应激与动脉粥样硬化.中国动脉硬化杂志, 3,1(4):312-321.QIAO W N, CHEN H Y, ZHANG Y.Oxidative stress and atherosclerosis.Chin J Arterioscler, 3,1(4):312-321.
    [17] ABDERRAHMAN H A, AL-ABDALLAT I M, IDHAIR A K.Age threshold for proper definition of premature coronary artery disease in males.J Forensic Leg Med, 8,8:45-49.
    [18] 赵娜, 侯志辉, 安云强, 等.基于冠状动脉CT血管成像的冠状动脉粥样硬化斑块量化特征及易损性的门诊队列研究.中华放射学杂志, 0,4(5):467-473.ZHAO N, HOU Z H, AN Y Q, et al.Analysis of quantitative characteristics and vulnerability of coronary atherosclerotic plaques with distribution of age:based on an out-patient cohort study of coronary CT angiography.Chin J Radiol, 0,4(5):467-473.
    [19] BABER U, STONE G W, WEISZ G, et al.Coronary plaque composition, morphology, and outcomes in patients with and without chronic kidney disease presenting with acute coronary syndromes.JACC Cardiovasc Imaging, 2,5(3 Suppl):S53-S61.
    [20] YAMAMOTO S, YANCEY P G, ZUO Y, et al.Macrophage polarization by angiotensinⅡ-type 1 receptor aggravates renal injury-acceleration of atherosclerosis.Arterioscler Thromb Vasc Biol, 1,1(12):2856-2864.
    [21] PONDA M P, BARASH I, FEIG J E, et al.Moderate kidney disease inhibits atherosclerosis regression.Atherosclerosis, 0,0(1):57-62.
    [22] SUGANUMA E, ZUO Y, AYABE N, et al.Antiatherogenic effects of angiotensin receptor antagonism in mild renal dysfunction.J Am Soc Nephrol, 6,7(2):433-441.
    [23] YAMAMOTO S, ZHONG J, YANCEY P G, et al.Atherosclerosis following renal injury is ameliorated by pioglitazone and losartan via macrophage phenotype.Atherosclerosis, 5,2(1):56-64.
    [24] HAYANO S, ICHIMIYA S, ISHII H, et al.Relation between estimated glomerular filtration rate and composition of coronary arterial atherosclerotic plaques.Am J Cardiol, 2,9(8):1131-1136.
    [25] CRIQUI M H, DENENBERG J O, IX J H, et al.Calcium density of coronary artery plaque and risk of incident cardiovascular events.JAMA, 4,1(3):271-278.
    [26] WU N, SHEN H, LIU H, et al.Acute blood glucose fluctuation enhances rat aorta endothelial cell apoptosis, oxidative stress and pro-inflammatory cytokine expression in vivo.Cardiovasc Diabetol, 6,5(1):109.
    [27] 孟宪杰, 刘蕊, 曹丽慧, 等.长链非编码RNA MIAT在2型糖尿病合并冠心病患者血清中的水平及对高糖诱导的心肌细胞损伤的影响.中国动脉硬化杂志, 3,1(6):481-490.MENG X J, LIU R, CAO L H, et al.Serum levels of long non-coding RNA MIAT in patients with type 2 diabetes mellitus and coronary heart disease and its effect on high glucose-induced cardiomyocyte injury.Chin J Arterioscler, 3,1(6):481-490.
    [28] IBEBUOGU U N, NASIR K, GOPAL A, et al.Comparison of atherosclerotic plaque burden and composition between diabetic and non diabetic patients by non invasive CT angiography.Int J Cardiovasc Imaging, 9,5(7):717-723.
    [29] KWON Y S, JANG J S, LEE C W, et al.Comparison of plaque composition in diabetic and non-diabetic patients with coronary artery disease using multislice CT angiography.Korean Circ J, 0,0(11):581-586.
    [30] Emerging Risk Factors Collaboration, SARWAR N, GAO P, et al.Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease:a collaborative meta-analysis of 102 prospective studies.Lancet, 0,5(9733):2215-2222.
    [31] HEINSEN L J, PARARAJASINGAM G, ANDERSEN T R, et al.High-risk coronary artery plaque in asymptomatic patients with type 2 diabetes:clinical risk factors and coronary artery calcium score.Cardiovasc Diabetol, 1,0(1):164.
    [32] 党晶艺, 郝启萌, 蒋娜, 等.血清脂蛋白(a)、β2微球蛋白和肿瘤坏死因子水平α与急性冠状动脉综合征患者冠状动脉病变程度的关系.中国动脉硬化杂志, 0,8(8):702-706.DANG J Y, HAO Q M, JIANG N, et al.Relationship between serum lipoprotein(a), β2-microglobulin and tumor necrosis factor-α levels and degree of coronary artery lesion in patients with acute coronary syndrome.Chin J Arterioscler, 0,8(8):702-706.
    [33] MCKEL M, MULLER R, SEARLE J, et al.Usefulness of beta2-microglobulin as a predictor of all-cause and nonculprit lesion-related cardiovascular events in acute coronary syndromes (from the PROSPECT study) .Am J Cardiol, 5,6(7):1034-1040.
    [34] HILT Z T, MAURYA P, TESORO L, et al.β2M signals monocytes through non-canonical TGFβ receptor signal transduction.Circ Res, 1,8(5):655-669.
    引证文献
引用本文

唐远雪,焦欢,李奎,吴蕾,丁红.冠状动脉CT显示粥样硬化斑块列线图预测模型的构建及斑块稳定性的影响因素[J].中国动脉硬化杂志,2023,31(12):1043~1050.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2023-06-23
  • 最后修改日期:2023-08-16
  • 在线发布日期: 2023-12-29