CT冠状动脉周围脂肪衰减结合机器学习算法诊断冠心病心肌缺血
作者:
作者单位:

(1.复旦大学附属中山医院血管外科,;2.复旦大学血管外科研究所,;3.国家放射与治疗临床医学研究中心,;4.复旦大学基础医学院,上海市 200032;5.同济大学附属东方医院,上海市200120)

作者简介:

陆意歌,博士研究生,研究方向为主动脉与心血管病疾,E-mail:17301050231@fudan.edu.cn。

基金项目:

国家自然科学基金面上项目(82070365)


CT coronary perivascular fat attenuation combined with machine learning algorithms for diagnosis of myocardial ischemia in coronary heart disease
Author:
Affiliation:

1.Department of Vascular Surgery, Zhongshan Hospital Affiliated to Fudan University, ;2.Institute of Vascular Surgery, Fudan University, ;3.National Center for Radiological and Therapeutic Clinical Medicine Research, Fudan University,;4.School of Basic Medical Sciences, Fudan University, Shanghai 200023, China;5.Shanghai East Hospital, Tongji University, Shanghai 200120, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
    摘要:

    目的]探讨利用机器学习算法结合冠状动脉计算机断层扫描(CT)衍生的血管周围脂肪衰减指数(FAI)与斑块信息评估稳定型冠心病患者心肌缺血的可行性。 [方法]回顾性分析2019年4月─2021年10月于复旦大学附属中山医院行术前冠状动脉CT血管成像(CCTA)、有创冠状动脉造影(ICA)及血流储备分数(FFR)测量患者的临床及影像学资料,筛选出206例稳定型冠心病患者。使用半自动斑块分析软件测量斑块及管腔的定量指标和斑块周围FAI,手动勾画距冠状动脉开口处10 mm起始长为40 mm的冠状动脉并测量冠状动脉周围FAI。比较心肌缺血(FFR≤0.8)和非心肌缺血(FFR>0.8)稳定型冠心病患者的斑块特征、斑块周围FAI和冠状动脉周围FAI的差异,通过ROC曲线评估利用机器学习算法结合斑块周围FAI、冠状动脉周围FAI和斑块特征对稳定型冠心病患者心肌缺血的诊断效能。 [结果]206例稳定型冠心病患者分为FFR≤0.8组(50例)和FFR>0.8组(156例)。FFR≤0.8组患者的斑块周围FAI均值为-69.28±5.65 HU,显著高于FFR>0.8组的-80.10±7.75 HU(P<0.001)。使用机器学习模型进行进一步分析,包括XGBoost、随机森林和逻辑回归模型,这些模型诊断心肌缺血的准确率均超过0.8。其中,XGBoost模型表现最佳,准确率达到0.903,F1值为0.774,AUC为0.931,表明其在诊断心肌缺血中具有高度的有效性。 [结论]FAI结合机器学习算法XGBoost模型是诊断心肌缺血的新方法,在评估稳定型冠心病患者的心肌缺血中具有更良好的诊断价值。

    Abstract:

    Aim To explore the feasibility of using machine learning algorithms combined with coronary computed tomography (CT) derived perivascular fat attenuation index (FAI) and plaque information to evaluate myocardial ischemia in stable coronary heart disease patients. Methods A retrospective analysis was conducted on the clinical and imaging data of patients who underwent preoperative coronary CT angiography (CCTA), invasive coronary angiography (ICA), and flow reserve fraction (FFR) measurements at Zhongshan Hospital Affiliated to Fudan University from April 2019 to October 2021. 206 patients with stable coronary heart disease were selected. The semi-automatic plaque analysis software was used for quantification of plaque and lumen parameters and perivascular FAI measurement, with manual delineation of a 40 mm segment of the coronary artery starting 10 mm from the ostium for perivascular FAI measurement. Differences in plaque characteristics, perivascular FAI, and coronary perivascular FAI between stable coronary heart disease patients with FFR≤0.8 and FFR>0.8 were compared. The diagnostic performance of combining perivascular FAI, coronary perivascular FAI, and plaque features using machine learning algorithms for myocardial ischemia in stable coronary heart disease patients was evaluated through ROC curves. Results 206 stable coronary heart disease patients were divided into FFR≤0.8 group (50 cases) and FFR>0.8 group (156 cases). The mean periplaque FAI of patients with FFR≤0.8 was -69.28±5.65 HU, significantly higher than that of patients with FFR>0.8 at -80.10±7.75 HU (P<0.001). Further analysis was conducted using machine learning models, including XGBoost, random forest, and Logistic regression models, all of which had an accuracy rate of over 0.8 in diagnosing myocardial ischemia. Among them, the XGBoost model performed the best with an accuracy of 0.903, an F1 value of 0.774, and an AUC of 0.931, indicating its high effectiveness in diagnosing myocardial ischemia. Conclusion The combination of FAI and machine learning algorithm XGBoost model is a new method for diagnosing myocardial ischemia, which has better diagnostic value in evaluating myocardial ischemia in stable coronary heart disease patients.

    参考文献
    相似文献
    引证文献
引用本文

陆意歌,何玮,林泓言,何芙蓉,张涵博,谭尧,朱鸿明. CT冠状动脉周围脂肪衰减结合机器学习算法诊断冠心病心肌缺血[J].中国动脉硬化杂志,2024,32(6):514~520.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2023-11-13
  • 最后修改日期:2024-04-27
  • 在线发布日期: 2024-07-04