STZ诱导联合高脂喂养LDLR-/-小鼠糖尿病动脉粥样硬化模型的构建及评价
作者:
作者单位:

(1.山东大学齐鲁医院(青岛)心内科,山东省青岛市 266053;2.青岛大学教务处,山东省青岛市 266000;3.山东大学齐鲁医院心内科,山东省济南市 250012)

作者简介:

王丽,硕士研究生,医师,主要从事高血压与心脏重构机制、动脉粥样硬化发生发展机制及防控研究,E-mail:wanglisdu@163.com。

基金项目:

国家自然科学基金面上项目(81970282);青岛市临床重点专科建设项目(QDZDZK-2022008)


Construction and evaluation of diabetic atherosclerosis model in LDLR-/- mice induced by STZ and fed with high-fat diet
Author:
Affiliation:

1.Department of Cardiology, Qilu Hospital (Qingdao), Shandong University, Qingdao, Shandong 266053, China;2.Academic Affairs Office of Qingdao University, Qingdao, Shandong 266000, China;3.Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • | |
    摘要:

    目的]构建糖尿病动脉粥样硬化小鼠模型,并研究该小鼠模型中糖尿病促动脉粥样硬化的病理特点。 [方法]8周龄雄性LDLR-/-小鼠50只,普脂饮食适应性喂养2周后改为高脂饮食,并随机分为两组,糖尿病动脉粥样硬化组采用小剂量链脲佐菌素(STZ)腹腔注射5天造模,动脉粥样硬化组同时给予柠檬酸盐缓冲液注射。多次检测两组小鼠体质量、血糖、血脂,于23周龄糖耐量检测后安乐处死,采用HE染色和油红O染色检测小鼠全长主动脉和主动脉根部动脉粥样硬化,免疫组织化学染色检测斑块内CD4、α-平滑肌肌动蛋白(α-SMA)、巨噬细胞含EGF样模块黏蛋白样激素受体1(EMR1)、单核细胞趋化蛋白1(MCP-1)、NOD样受体蛋白3(NLRP3)、血管细胞黏附分子1(VCAM-1)、基质金属蛋白酶2(MMP-2)、组织金属蛋白酶抑制物1(TIMP-1),Western blot检测α-SMA、CD4、肿瘤坏死因子α(TNF-α)、NLPR3、细胞间黏附分子1(ICAM-1)、Ⅰ型和Ⅲ型胶原。 [结果]与动脉粥样硬化组相比,糖尿病动脉粥样硬化组小鼠体质量降低,总胆固醇(TC)、甘油三酯(TG)和低密度脂蛋白胆固醇(LDLC)水平升高,高密度脂蛋白胆固醇(HDLC)水平降低,糖耐量降低(P<0.05)。与动脉粥样硬化组相比,糖尿病动脉粥样硬化组动脉粥样硬化斑块分布弥漫且面积增加,其中脂质、T细胞、巨噬细胞、平滑肌细胞、Ⅰ型和Ⅲ型胶原含量增加(P<0.05);血管组织中TNF-α、MCP-1、MMP-2、NLRP3、ICAM-1、VCAM-1蛋白含量增加,而TIMP-1蛋白含量降低,MMP2/TIMP-1比值升高(P<0.05)。 [结论]通过STZ诱导联合高脂饮食,可将LDLR-/-小鼠成功构建糖尿病动脉粥样硬化模型,并能体现糖尿病促动脉粥样硬化的斑块组成及炎症特点,可作为一种相对理想的研究糖尿病大血管病变的病理模型。

    Abstract:

    Aim To construct a diabetic atherosclerosis mouse model and study the pathological characteristics of diabetic atherosclerosis. Methods Fifty 8-week-old male LDLR-/- mice were fed with standard diet for 2 weeks and then changed to high-fat diet, they were randomly divided into two groups. The diabetic atherosclerosis group was given intraperitoneal injection of low dose streptozotocin (STZ) for 5 days continuouly to establish the model, and the atherosclerosis group was given citrate buffer injection at the same time. The body mass, blood glucose and blood lipids of the mice in the two groups were detected for many times. At the age of 23 weeks, the mice were euthanized after glucose tolerance test. HE staining and oil red O staining were used to detect the gross and aortic root atherosclerosis, immunohistochemical staining was used to detect CD4, α-smooth muscle actin (α-SMA), EGF-like module-containing mucin-like hormone receptor-like 1 (EMR1), monocyte chemotactic protein-1 (MCP-1), NOD-like receptor protein 3 (NLRP3), vascular cell adhesion molecule-1 (VCAM-1), matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1), Western blot was used to detect α-SMA, CD4, tumor necrosis factor-α (TNF-α), NLPR3, intercellular adhesion molecule-1 (ICAM-1), and type Ⅰ and Ⅲ collagen.Results Compared with the atherosclerosis group, the body mass decreased, the levels of total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDLC) increased, and the levels of high density lipoprotein cholesterol (HDLC) decreased (P<0.05) in the diabetic atherosclerosis group. Compared with the atherosclerosis group, the distribution of atherosclerotic plaques was diffuse and the area was increased in the diabetic atherosclerosis group, and the contents of lipids,Tü cells, macrophages, smooth muscle cells, type Ⅰ and Ⅲ collagen were increased (P<0.05); the protein levels of TNF-α, MCP-1, MMP-2, NLRP3, ICAM-1 and VCAM-1 in vascular tissues were increased, while the content of TIMP-1 were decreased and MMP2/TIMP-1 were increased (P<0.05). Conclusions LDLR-/- mouse model of diabetic atherosclerosis can be successfully established by STZ induction combined with high-fat diet, which can reflect the plaque composition and inflammatory characteristics of diabetes promoting atherosclerosis. It can be used as a relatively ideal pathological model for the study of diabetic macroangiopathy.

    参考文献
    [1] CRASTO W, PATEL V, DAVIES M J, et al.Prevention of microvascular complications of diabetes.Endocrinol Metab Clin North Am, 1,0(3):431-455.
    [2] PANENI F, BECKMAN J A, CREAGER M A, et al.Diabetes and vascular disease:pathophysiology, clinical consequences, and medical therapy:part I.Eur Heart J, 3,4(31):2436-2443.
    [3] 孙慧, 赵磊, 甄茜, 等.STZ诱导糖尿病联合正常饮食促ApoE-/-小鼠动脉粥样硬化的作用.山东大学学报(医学版), 2014(10):1-8,8.SUN H, ZHAO L, ZHEN Q, et al.Pro-atherosclerotic effects of streptozotocin-induced diabetes combined with chow diet on ApoE-/- mice.J Shandong Univ (Health Sci), 2014(10):1-8,8.
    [4] GOLDBERG I J, ISAACS A, SEHAYEK E, et al.Effects of streptozotocin-induced diabetes in apolipoprotein AⅠ deficient mice.Atherosclerosis, 4,2(1):47-53.
    [5] SUN H, ZHANG X, ZHAO L, et al.Attenuation of atherosclerotic lesions in diabetic apolipoprotein E-deficient mice using gene silencing of macrophage migration inhibitory factor.J Cell Mol Med, 5,9(4):836-849.
    [6] HENNING R J.Type-2 diabetes mellitus and cardiovascular disease.Future Cardiol, 8,4(6):491-509.
    [7] 崔淼, 朱春江, 刘向荣.糖尿病动物模型构建的研究进展.中国实验诊断学, 3,7(2):227-230.CUI M, ZHU C J, LIU X R.Research progress on the establishment of diabeticanimal model.Chin J Lab Diagn, 3,7(2):227-230.
    [8] REED M J, MESZAROS K, ENTES L J, et al.A new rat model of type 2 diabetes:the fat-fed, streptozotocin-treated rat.Metabolism, 0,9(11):1390-1394.
    [9] WU K K, HUAN Y.Diabetic atherosclerosis mouse models.Atherosclerosis, 7,1(2):241-249.
    [10] PARK L, RAMAN K G, LEE K J, et al.Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts.Nat Med, 8,4(9):1025-1031.
    [11] DAUGHERTY A, TALL A R, DAEMEN M J A P, et al.Recommendation on design, execution, and reporting of animal atherosclerosis studies:a scientific statement from the American Heart Association.Arterioscler Thromb Vasc Biol, 7,7(9):e131-e157.
    [12] PLUMP A S, SMITH J D, HAYEK T, et al.Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells.Cell, 2,1(2):343-353.
    [13] LEE Y T, LIN H Y, CHAN Y W, et al.Mouse models of atherosclerosis:a historical perspective and recent advances.Lipids Health Dis, 7,6(1):12.
    [14] CIVEIRA-MARN M, CENARRO A, MARCO-BENED V, et al.APOE genotypes modulate inflammation independently of their effect on lipid metabolism.Int J Mol Sci, 2,3(21):12947.
    [15] ISHIBASHI S, BROWN M S, GOLDSTEIN J L, et al.Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery.J Clin Invest, 3,2(2):883-893.
    [16] LICHTMAN A H, CLINTON S K, IIYAMA K, et al.Hyperlipidemia and atherosclerotic lesion development in LDL receptor-deficient mice fed defined semipurified diets with and without cholate.Arterioscler Thromb Vasc Biol, 9,9(8):1938-1944.
    [17] 支晨曦, 谢忠成, 李靓, 等.中国动脉粥样硬化近三年基础研究进展.中国动脉硬化杂志, 2,0(9):744-752.ZHI C X, XIE Z C, LI L, et al.The progress of the national preclinical research of atherosclerosis in the recent three years.Chin J Arterioscler, 2,0(9):744-752.
    [18] POZNYAK A, GRECHKO A V, POGGIO P, et al.The diabetes mellitus-atherosclerosis connection:the role of lipid and glucose metabolism and chronic inflammation.Int J Mol Sci, 0,1(5):1835.
    [19] MANTOVANI A, GARLANDA C, LOCATI M.Macrophage diversity and polarization in atherosclerosis:a question of balance.Arterioscler Thromb Vasc Biol, 9,9(10):1419-1423.
    [20] 孟庆雯, 刘华江, 易泓汝, 等.NLRP3炎症小体在动脉粥样硬化中的作用机制和靶向炎症治疗的研究进展.中国动脉硬化杂志, 4,2(1):79-86.MENG Q W, LIU H J, YI H R, et al.Mechanisms of NLRP3 inflammasome in atherosclerosis and advances in targeted inflammatory therapy.Chin J Arterioscler, 4,2(1):79-86.
    [21] POECK H, RULAND J.ITAM receptor signaling and the NLRP3 inflammasome in antifungal immunity.J Clin Immunol, 0,0(4):496-501.
    [22] RHEINHEIMER J, DE SOUZA B M, CARDOSO N S, et al.Current role of the NLRP3 inflammasome on obesity and insulin resistance:a systematic review.Metabolism, 7,4:1-9.
    [23] DING S, ZHANG M, ZHAO Y, et al.The role of carotid plaque vulnerability and inflammation in the pathogenesis of acute ischemic stroke.Am J Med Sci, 8,6(1):27-31.
    [24] VICENTE A, BRAVO-GONZLEZ L A, NAVARRO J A, et al.Effects of diabetes on oxidative stress, periodontal ligament fiber orientation, and matrix metalloproteinase 8 and 9 expressions during orthodontic tooth movement.Clin Oral Investig, 1,5(3):1383-1394.
    [25] ORBE J, FERNANDEZ L, RODRGUEZ J A, et al.Different expression of MMPs/TIMP-1 in human atherosclerotic lesions.Relation to plaque features and vascular bed.Atherosclerosis, 3,0(2):269-276.
    引证文献
引用本文

王丽,高金宁,陈湘云,姜沛青,李梅,步芳芳,张梅,姚桂华,孙慧. STZ诱导联合高脂喂养LDLR-/-小鼠糖尿病动脉粥样硬化模型的构建及评价[J].中国动脉硬化杂志,2024,32(11):985~993.

复制
分享
文章指标
  • 点击次数:78
  • 下载次数: 835
历史
  • 收稿日期:2024-06-04
  • 最后修改日期:2024-07-23
  • 在线发布日期: 2024-11-22